Math, asked by salimkhan64974, 9 months ago

A metal pipe is 77 cm long the inner diameter of a cross section is 4 cm , the outer diameter being 4.4 cm find inner ​

Answers

Answered by Anonymous
35

Answer:

 \sf{1)inner \: curved \: surface \: area =  {968cm}^{2}}

 \sf{2)outer \: curved \: surface \: area = 1064.8 {cm}^{2}}

 \sf{3)total \: surface \: area =  {2038.08cm}^{2}}

Step-by-step explanation:

 \sf{1)diameter = {d_{1}} = 4cm}

 \sf{radius =  \frac{d_{1} }{2}} =  \frac{4}{2} = 2cm

 \sf{height = 7cm}

 \sf{inner \: curved \: surface \: area = 2\pi rh}

 \sf{ = 2 \times  \frac{22}{7} \times 2 \times 77}

 \sf{ = 986 {cm}^{2}}

 \sf{2)outer \: curved \: surface \: area}

 \sf{diameter =d_{2} = 4.4cm}

 \sf{radius = \frac{4.4}{2} = 2.2cm}

 \sf{height = 77cm}

 \sf{outer \: curved \: surface \: area = 2\pi rh}

 \sf{ = 2 \times  \frac{22}{7} \times 2.2 \times 77}

 \sf{ = 1064.8 {cm}^{2}}

 \sf{3)total \: surface \: area}

 \sf{area \: of  \: the\: base (base \: is \: a \: concentric \: circle)}

 \sf{ = 2\pi( {R}^{2} -  {r}^{2})}

  \sf{ = 2 \times  \frac{22}{7}((2.2)^{2} - ( {2}^{2}))}

 \sf{ = 22 \times  \frac{22}{7}(4.84 - 4)}

 \sf{ = total \: surface \: area(tsa) \: of \: the \: given \: cylindrical \: pipe = inner \: curved \: surface \: area + outer \: curved \: surface \: area + area \: of \: the \: both \: bases}

 \sf{ =  {986cm}^{2} +  {1064cm}^{2} +  {5.28cm}^{2}}

  \sf{ =  {2038.08cm}^{2}}

 \bf \pink{ \underline{please \: mark \: it \: as \: brainlist \: answer}}

Similar questions