Physics, asked by Anonymous, 11 months ago

A metal rod .50 m is heated from 15C to 95C. The length of the rod increases by 0.96
mm. What is the coefficient of expansion for the rod?

Answers

Answered by shadowsabers03
23

\Large\boxed{\sf{\quad\alpha=2.4\times10^{-5}\ K^{-1}\quad}}

Length of the metal rod,

  • \sf{L=0.5\ m}

Initial temperature,

  • \sf{T_1=15^oC}

And final temperature,

  • \sf{T_2=95^oC}

So the difference in temperature is,

  • \sf{\Delta T=T_2-T_1}

  • \sf{\Delta T=95^oC-15^oC}

  • \sf{\Delta T=80^oC}

Or,

  • \sf{\Delta T=80\ K}

[Note: The units \sf{\ ^oC,\ K} are same in case of temperature difference.]

The extension formed in the rod,

  • \sf{\Delta L=0.96\ mm}

  • \sf{\Delta L=0.96\times10^{-3}\ m}

We have,

\longrightarrow\sf{\Delta L=L\cdot\alpha\cdot\Delta T}

Then the coefficient of linear expansion,

\longrightarrow\sf{\alpha=\dfrac{\Delta L}{L\cdot\Delta T}}

\longrightarrow\sf{\alpha=\dfrac{0.96\times10^{-3}}{0.5\times80}}

\longrightarrow\sf{\underline{\underline{\alpha=2.4\times10^{-5}\ K^{-1}}}}

Similar questions