Math, asked by tridibeshsen09, 9 months ago

A metallic cylinder with height 20 cm and the diameter of base 56 cm is melted to make smaller
cylinders of radius 7 cm and height 5 cm. How many cylinders can be made?​

Answers

Answered by Anonymous
32

{ \rm{ \large \underline \bold{given}}}

{ \rm{ the \: height \: of \: a \: cylinder = 20 \: cm}}

{ \rm{the \: diameter \: of \: base = 56 \: cm}}

{ \rm{ \therefore \: radius =  \frac{56}{2}  = 28}}

 { \rm{\therefore volume =   \pi  {r}^{2} h}}

{ \rm{  =   \frac{22}{7}  \times  28 \times 28 \times 20}}

{ \rm{ =  {22 \times 28 \times 4 \times 20} }}

 { \rm{  =  {49280} \:  {cm}^{3}  }}

 { \rm{so \: the \: volume \: is \: 16246.6 \:  {cm}^{3}}}

{ \rm{now \: the \: radius \:  of \: smaller \: cylinder = 7 \: cm}}

{ \rm{ and \: height = 5 \: cm}}

{ \rm{ \therefore volume \: of \: each \: cylinder =   \pi {r}^{2}h}}

{ \rm{  =  \frac{22}{7}   \times {7} \times7 \times  5}}

{ \rm{ =  {22 \times 7 \times 5} }}

{ \rm{  = {770} \:  {cm}^{3}  }}

{ \rm{no.of \: cylinders  =  \frac{volume \: of \: original \: cylinders}{volume \: of \: smaller \: cylinder} }}

{ \rm{ =  \frac{49820}{770}  }}

{ \rm{ = 64}}

{ \rm{ \large{so \: the \: no.of \: cylinders  \: are  \: 64}}}

────────────────────────────

  \boxed{\large \underline \mathfrak \purple{more \: information}}

{ \rm{ area \: of \: cross \: section =  \pi {r}^{2} }}

{ \rm{perimeter = 2 \pi r}}

{ \rm{curved \: surfce \: area = 2 \pi rh}}

{ \rm{total \: surface \: area = 2 \pi r(h + r)}}

{ \rm{volume =  \pi  {r}^{2} h}}

Similar questions