A metallic element 'X' exists as a cubic lattice Each edge of the unit cell is 2.90Ȧ and density of
metal is 7.20 g cm-3
.How many unit cell will be present in 100g of the metal?
Answers
Answered by
0
Assuming that it is a simple cubic lattice the effective number of atoms per unit cell (Z)=1
Atomic mass of the element is A
Avogadro's number N = 6.022*10^23
Edger length a = 2.88*10^(-8)cm
Density d = 7.20 g/cc
now
d=\frac{Z*A}{N* a^{3} } i.e. 7.2= \frac{1*A}{(6.022* 10^{23})*(2.88* 10^{-8}) ^{3}} i.e A = 103.57d=
N∗a
3
Z∗A
i.e.7.2=
(6.022∗10
23
)∗(2.88∗10
−8
)
3
1∗A
i.eA=103.57
so
mass of one atom ≡ 1 unit cell
i.e. 103.57u ≡ 1 unit cell
or 103.57 * 1.667 * 10^(-24) g ≡ 1 unit cell
or 100 g metal⇒\frac{100}{103.57*1.667* 10^{-24} } =
103.57∗1.667∗10
−24
100
= 5.792*10^{23}10
23
number of unit cells
Similar questions