a metallic pipe has internal diameter 14 cm and thickness 0.5 cm if 1cm³ of the material has mass 10 gm find the mass of 28 cm long pipe
Answers
Step-by-step explanation:
Question 1
Given :-
Perimeter of rectangle= 240cm
Length of rectangle 40cm
To Find :-
We have to find the Area of rectangle
Solution:-
Let the breadth of rectangle be x
Now first find the breadth then the area
\begin{gathered}\underline{\blue{\sf\ Perimeter\ of\ Rectangle= 2(l+b)}}\\ \\ \\ :\implies\sf\ 240= 2(40+x)\\ \\ \\ :\implies\sf\ \cancel{\dfrac{240}{2}}= 40+x\\ \\ \\ :\implies\sf\ 120=40+x\\ \\ \\ :\implies\sf\ 120-40=x\\ \\ \\ :\implies\sf\ 80=x\\ \\ \\ \therefore{\purple{\sf\ Breadth=80cm}}\end{gathered}
Perimeter of Rectangle=2(l+b)
:⟹ 240=2(40+x)
:⟹
2
240
=40+x
:⟹ 120=40+x
:⟹ 120−40=x
:⟹ 80=x
∴ Breadth=80cm
Now Area of rectangle
\begin{gathered}\underline{\boxed{\sf\ Area\ of\ Rectangle= \ell \times b}}\\ \\ \\ :\implies\sf\ Area= 80\times 40\\ \\ \\ :\implies\sf\ Area= 3200cm^2\end{gathered}
Area of Rectangle=ℓ×b
:⟹ Area=80×40
:⟹ Area=3200cm
2
\underline{\textsf{\textbf{\ Area\ of\ Rectangle= 3200cm}}^2}
Area of Rectangle= 3200cm
2
\underline{\it\ Question \ 2}
Question 2
Let the total quantity be a
Now 7% of a =490
We have to find the value of a
Solution :-
\begin{gathered}:\implies\sf\ 7\%\ of\ a= 490\\ \\ \\ :\implies\sf\ \dfrac{7}{100}\times \ a= 490\\ \\ \\ :\implies\sf\ a= \dfrac{\cancel{490}\times 100}{\cancel{7}}\\ \\ \\ :\implies\sf\ a= 70\times 100\\ \\ \\ :\implies\underline{\boxed{\sf{\red{\ a= 7000}}}}\end{gathered}
:⟹ 7% of a=490
:⟹
100
7
× a=490
:⟹ a=
7
490
×100
:⟹ a=70×100
:⟹
a=7000