Math, asked by yasarn, 4 months ago

a metallic pipe is 0.7 cm thick .Inner radius of the pipe is 3.5 cm and length is 5 dm .Find its total surface area ​

Answers

Answered by Anonymous
7

Answer :

  • Total surface area of pipe is 2453.88cm²

Given :

  • Thickness of pipe is 0.7m
  • inner radius of pipe (r) is 3.5cm
  • Length is 5dm = 50 cm
  • External radius of the pipe (R) = (3.5 + 0.7) = 4.2 cm

To find :

  • Total surface area

Solution :

Given that , a metallic pipe is 0.7 cm thick and inner radius of the pipe is 3.5 , length is 5 dm which means 50 cm and also find the External radius . so we have to use the formula of total surface area then we get total surface area of pipe

External radius of the pipe (R) = (3.5 + 0.7) = 4.2 cm

As we know that

  • Total surface area of pipe = 2π (r + R) (h + R - r)

where , r is inner radius 3.5cm , R is External radius 4.2cm , h is 50cm.

⟹ TSA of pipe = 2π (r + R) (h + R - r)

⟹ TSA of pipe = 2 × 22/7 (3.5+ 4.2) (50 + 4.2 - 3.5)cm²

⟹ TSA of pipe = 44/7 × 7.7 × 50.7 cm²

⟹ Total surface area of pipe = 2453.88cm²

Total surface area of pipe is 2453.88cm²

Answered by Anonymous
2

Answer :

Total surface area of pipe is 2453.88cm²

Given :

Thickness of pipe is 0.7m

inner radius of pipe (r) is 3.5cm

Length is 5dm = 50 cm

External radius of the pipe (R) = (3.5 + 0.7) = 4.2 cm

To find :

Total surface area

Solution :

Given that , a metallic pipe is 0.7 cm thick and inner radius of the pipe is 3.5 , length is 5 dm which means 50 cm and also find the External radius . so we have to use the formula of total surface area then we get total surface area of pipe

External radius of the pipe (R) = (3.5 + 0.7) = 4.2 cm

As we know that

Total surface area of pipe = 2π (r + R) (h + R - r)

where , r is inner radius 3.5cm , R is External radius 4.2cm , h is 50cm.

⟹ TSA of pipe = 2π (r + R) (h + R - r)

⟹ TSA of pipe = 2 × 22/7 (3.5+ 4.2) (50 + 4.2 - 3.5)cm²

⟹ TSA of pipe = 44/7 × 7.7 × 50.7 cm²

⟹ Total surface area of pipe = 2453.88cm²

∴Total surface area of pipe is 2453.88cm²

Similar questions