a metallic right circular cylinder is 15 cm high and the diameter of its base is 14 cm. it is melted and recasted into another cylinder with radius 14 cm. find height,curved surface area and total surface area of the cylinder.
Answers
Answer:
Answer is given below
Step-by-step explanation:
Height =15 cm
Diameter = 14 cm
radius =7cm
volume =
radius of the new cylinder =14 cm
let the height be h
volume =
height =3.5 cm
CSA =
TSA =
Answer:
Height =15 cm
Diameter = 14 cm
radius =7cm
volume =
\begin{gathered}\pi \times r ^{2} \times h = \frac{22}{7} \times 49 \times 15 {cm}^{3} \\ = 22 \times 7 \times 15 {cm}^{3} \end{gathered}
π×r
2
×h=
7
22
×49×15cm
3
=22×7×15cm
3
radius of the new cylinder =14 cm
let the height be h
volume =
\begin{gathered}\pi \times {r}^{2} \times h \\ \end{gathered}
π×r
2
×h
\begin{gathered} = > 770 = \frac{22}{7} \times 14 \times 14 \times h \\ = > 770 = 22 \times 2 \times 14 \times h\end{gathered}
=>770=
7
22
×14×14×h
=>770=22×2×14×h
\begin{gathered} = > h = 770 \div 22 \times 2 \times 14 \\ = > h = \frac{5}{14} \\ = > h = 3.5cm \end{gathered}
=>h=770÷22×2×14
=>h=
14
5
=>h=3.5cm
height =3.5 cm
CSA =
\begin{gathered}2 \times \pi \times r \times h \\ = 2 \times \frac{22}{7} \times 14 \times 3.5 {cm}^{2} \\ = 308 {cm}^{2} \end{gathered}
2×π×r×h
=2×
7
22
×14×3.5cm
2
=308cm
2
TSA =
\begin{gathered}2 \times \pi \times r(h + r) \\ = 2 \times \frac{22}{7} \times 14 \times (3.5 + 14) {cm}^{2} \\ = 88 \times 17.5 {cm}^{2} \\ = 1540 {cm}^{2} \end{gathered}
2×π×r(h+r)
=2×
7
22
×14×(3.5+14)cm
2
=88×17.5cm
2
=1540cm
2