Math, asked by sfgfgg, 9 months ago

A metallic sphere of radius 4.2 cm is melted and recast into the shape of a cylinder of radius 6 cm. Find the height of the cylinder.

Answers

Answered by Anonymous
270

 \huge \fcolorbox{black}{pink}{Solution.}

 \bf{For \: Sphere}

 \rm Radius \: (r) = 4.2 \: cm

  \therefore   \sf Volume \: of \: sphere =  \frac{4}{3}\pi r {}^{2}

 \:  \:  \:  \:  \:  \:  \sf  =  \frac{4}{3}\pi (4.2) {}^{3}   \: cm {}^{3}

 \bf {For \: Cylinder}

 \rm Radius(R) = 6 \: cm

 \sf{Let \: the \: height \: of \: the \: cylinder \: be \: H \: cm.}

 \rm Then, \:

 \sf{Volume \: of \: Cylinder = \pi  r {}^{2} H = \pi(6) {}^{2} H \: cm {}^{3} }

 \rm According \: to \: the \: Question,

 \sf{Volume \: of \: the \: metallic \: sphere \: must \: be}

 \rm = Volume \: of \: the \: cylinder

 \implies \:  \:  \:  \:  \sf\frac{4}{3} \: \pi(4.2) {}^{3}  = \pi(6) {}^{2} h

 \rm Dividing \: both \: sides \: by \: \pi  \: and \: cross \: multiplying,

  \:  \:  \:  \:  \:  \:  \:  \: \sf{3(6) {}^{2} H = 4(4.2) {}^{3} }

 \implies \:  \:  \:  \:  \:  \:  \sf{ H =  \frac{4(4.2) {}^{3}} {3(6) {}^{2}}} \\

 \implies \:  \:  \rm H =  \frac{4 \times 4.2 \times 4.2 \times 4.2}{3 \times 6 \times 6} \\

 \:  \:  \:  \:  \:  \:  \:  \sf = 4 \times 1.4 \times 0.7 \times 0.7

  \:  \: \:  \:  \:  \:  \:  \:  \:  \rm = 4 \times  \frac{14}{10} \times  \frac{7}{10} \times  \frac{7}{10} \\

 \:  \:  \:  \:  \:  \:  \sf = \frac{56 \times 49}{1000}  =  \frac{2744}{1000} \\

 \implies \rm \:  \:  \:  \:  \:  \:  \:  \: H = 2.744

 \sf Hence, \: the \: height \: of \: the \: cylinder \: is \: 2.744  \\ \:  \sf \:cm.

Similar questions