Math, asked by faisaljbrn3298, 1 month ago

A metallic sphere of radius 4. 2 Cm is melted and recast into the -shape of a cylinder of radues 6 Cm Find the height of the cylinder

Answers

Answered by PsychoSnow
22

\huge\bf\underline{Answer}

Given:-

• A metallic sphere of radius 4.2 cm is melted

• the shape of a cylinder of radius 6 Cm

_______________________

Find:-

• the height of the cylinder

_______________________

Solution:-

\small\tt\underline{Now\:find\:the\:volume\:of\:sphere:-}

\small\tt{•Let\:the\:radius=r}

\small\tt{•sphere = 4.2 cm}

\rightarrow\tt{Volume\:of\:sphere}= {\frac{4}{3}}\pi\small\tt{r^3}

\therefore\tt{Volume\:of\:sphere} =

{\frac{4}{3}}\pi×\small\tt{(4.2)^3}

\RightarrowVolume of cylinder with radius,

\small\tt{• r = 6cm}

\small\tt{• height 'h' cm}

\therefore\small{\tt{Volume\:of\:cylinder =}} \pi\small\tt{r^2}\small\tt{h}

\rightarrow\pi×\small\tt{6^2}×\small\tt{h}= \small\tt{36}\pi\small\tt{h}

\small\boxed{\tt{Volume\:of\: sphere = volume\:of\:cylinder}}

\rightarrow{\frac{4}{3}}\pi×\small\tt{(4.2)^3} = \small\tt{36}\pi\small\tt{h}

\small\tt\underline{Find\:height"h"\:of\:cylinder:-}

\tt{h}={\frac{4π×(4.2)^3}{3×36π}}

\tt{h}={\frac{4.2×4.2×4.2}{3×9}}

\tt{h}= \small\tt{1.4×1.4×1.4}

\tt{h}= \small\tt{2.744cm}

______________________

______________________

\small\boxed{\tt{height\:of \:cylinder =2.744cm}}

Similar questions