Math, asked by yousuf9306bg, 10 months ago

A metallic sphere of radius 4.2 cm is melted and recasted as a cylinder of radius 6 cm,find its height

Answers

Answered by Anonymous
11

{\huge{\underline{\rm{GIVEN}}}}

  • Radius of metallic Sphere = 4.2cm

  • Radius of Cylinder = 6cm.

{\huge{\underline{\rm{TO\:FIND}}}}

  • The Height of the Cylinder

{\huge{\underline{\rm{FORMULAE\:USED}}}}

  • {\huge{\boxed{\sf{\blue{\pi r^2h}}}}}

  • {\huge{\boxed{\sf{\red{\dfrac{4}{3}\pi r^3}}}}}

Now,

  • If it is recasted then the volume of both the figure will be same.

So,

\implies\rm{Volume\:of\:sphere=Volume\:of\: Cylinder}

\implies\rm{\dfrac{4}{3}\times{\dfrac{22}{7}}\times{4.2}\times{4.2}\times{4.2} = \dfrac{22}{7}\times{6}\times{6}\times{h}}

\implies\rm{\dfrac{\cancel{4}}{3}\times{\dfrac{\cancel{22}}{\cancel{7}}}\times{4.2}\times{4.2}\times{4.2} = \dfrac{\cancel{22}}{\cancel{7}}\times{\cancel{36}}\times{h}}

\implies\rm{\dfrac{74.08}{3}= 9h}

\implies\rm{24.696 = 9h}

\implies\rm{h =\dfrac{24.696}{9}}

\implies\rm{ h = 2.744m}

MORE FORMULAES:-

\boxed{\begin{minipage}{5cm}\\ \\   \sf\bf{Area\:of\:circle= $ \tt \pi r^2 $}\\ \\  \tt\bf{T.S.A\:of\:Cylinder=$ \tt 2\pi r(r+h) $}\\ \\ \rm\bf{LSA of Cylinder= $ \tt 2\pi rh $}\end{minipage}}

Attachments:
Answered by Anonymous
9

\sf{\underline{\underline{\red{Question:-}}}}

A metallic sphere of radius 4.2 cm is melted and recasted as a cylinder of radius 6 cm,find its height.

\sf{\underline{\underline{\red{Note:-}}}}

  • If a solid is recasted in any other solid then volume will remains same.

So,

Volume of sphere = Volume of cylinder

\sf{\underline{\underline{\red{Given:-}}}}

  • sphere's radius = 4.2cm
  • cylinder's radius = 6cm

\large\sf →  \frac{4}{3}πr^3 = 2πr^{2}h

\large\sf→ \frac{4}{3}×\frac{22}{7}×4.3^3= 2×\frac{22}{7}×6×h

\large\sf→  \frac{98.784}{36}=h

\sf→ h = 2.7444

\sf{\underline{\underline{\red{Hence:-}}}}

  • hieght = 2.7444cm
Similar questions