Math, asked by irshad2093, 6 months ago

A metallic sphere of radius 4.2 cm is metaled and recast into the shape of a cylinder of radius 6cm. Find the height of the cylinder.

Answers

Answered by Ataraxia
71

Solution :-

Sphere :-

Radius = 4.2 cm

\star\bf Volume  \ of \ sphere = \dfrac{4}{3} \pi r^3

: \implies \sf \dfrac{4}{3} \times \pi \times 4.2 \times 4.2 \times 4.2

Cylinder :-

Radius = 6 cm

\star\bf Volume \ of \ cylinder = \pi r^2h

: \implies \sf \pi \times 6 \times 6 \times h

According to the question :-

Volume of cylinder = Volume of sphere

: \implies \sf \dfrac{4}{3} \times \pi \times 4.2 \times 4.2 \times 4.2 = \pi \times 6 \times 6 \times h

: \implies \sf 4 \times 1.4 \times 4.2 \times 4.2 = 6 \times 6 \times h

: \implies \sf 36h = 98.784

: \implies \sf h = \dfrac{98.784}{36}

: \implies \bf h = 2.744

Height of the cylinder :- 2.744 cm


BrainlyPhantom: Great answer :)
NewGeneEinstein: oh
NewGeneEinstein: Nice answer:D
Ataraxia: Thank uh!
Answered by NewGeneEinstein
18

Given:-

  • Radius of sphere =4.2 cm
  • Radius of cylinder =6 cm
  • Volume of cone = Volume of cylinder

To find:-

  • Height of the cylinder .

Solution:-

  • First come to sphere :

Diagram:-

\setlength{\unitlength}{1.2cm}\begin{picture}(0,0)\thicklines\qbezier(2.3,0)(2.121,2.121)(0,2.3)\qbezier(-2.3,0)(-2.121,2.121)(0,2.3)\qbezier(-2.3,0)(-2.121,-2.121)(0,-2.3)\qbezier(2.3,0)(2.121,-2.121)(-0,-2.3)\qbezier(-2.3,0)(0,-1)(2.3,0)\qbezier(-2.3,0)(0,1)(2.3,0)\thinlines\qbezier (0,0)(0,0)(0.2,0.3)\qbezier (0.3,0.4)(0.3,0.4)(0.5,0.7)\qbezier (0.6,0.8)(0.6,0.8)(0.8,1.1)\qbezier (0.9,1.2)(0.9,1.2)(1.1,1.5)\qbezier (1.2,1.6)(1.2,1.6)(1.38,1.9)\put(-0.1,1){\bf $4.2\:cm $}\end{picture}

  • Radius(r)=4.2 cm.

As we know that in a Sphere :

\bigstar\underline{\boxed{\bf Volume=\dfrac {1}{3}\pi r^3}}\bigstar

  • Substitute the values :

\\\qquad\quad\displaystyle\sf {:}\longrightarrow Volume_{(Sphere)}=\dfrac {4}{3}\pi (4.2)^3

\\\qquad\quad\displaystyle\tt {:}\longrightarrow Volume_{(Sphere )}=\dfrac {4}{3}\pi \times 4.2\times 4.2\times 4.2

________________

Now come to cylinder

  • Radius (r) = 6 cm.

Diagram:-

\setlength{\unitlength}{1mm}\begin{picture}(5,5)\thicklines\multiput(-0.5,-1)(26,0){2}{\line(0,1){40}}\multiput(12.5,-1)(0,3.2){13}{\line(0,1){1.6}}\multiput(12.5,-1)(0,40){2}{\multiput(0,0)(2,0){7}{\line(1,0){1}}}\multiput(0,0)(0,40){2}{\qbezier(1,0)(12,3)(24,0)\qbezier(1,0)(-2,-1)(1,-2)\qbezier(24,0)(27,-1)(24,-2)\qbezier(1,-2)(12,-5)(24,-2)}\multiput(18,2)(0,32){2}{\footnotesize{7cm}}\put(9,17.5){\sf{h}}\end{picture}

As we know that in a Cylinder :

\bigstar{\boxed{\bf Volume=\pi r^2h}}\bigstar

  • Substitute the values

\\\qquad\quad\displaystyle\sf {:}\longrightarrow Volume_{(Cylinder )}=\pi (6)^2h

\\\qquad\quad\displaystyle\sf {:}\longrightarrow Volume_{(Cylinder )}=\pi \times6\times 6\times h

___________________

ATQ,

\bf {:}\longrightarrow Volume_{(Sphere )}=Volume_{(Cylinder)}

  • Substitute the values :

\\\qquad\quad\displaystyle\sf {:}\longrightarrow \dfrac {4}{3}\bcancel {\pi} \times 4.2\times 4.2\times 4.2=\bcancel {\pi} \times 6\times 6\times h

\\\qquad\quad\displaystyle\sf {:}\longrightarrow \dfrac{4}{\cancel {3}}\times \cancel {4.2}\times 4.2\times 4.2=36h

\\\qquad\quad\displaystyle\sf {:}\longrightarrow 36h=4\times (4.2)^2\times 1.4

\\\qquad\quad\displaystyle\sf {:}\longrightarrow 36h=98.784

\\\qquad\quad\displaystyle\sf {:}\longrightarrow h =\cancel{\dfrac {98.784}{36}}

\\\qquad\quad\displaystyle {:}\longrightarrow\large {\boxed{\bf{ h=2.74\:cm}}}

\\\\\therefore{\underline{\bf {Height\:of\:Cylinder\:is\:2.74\:cm.}}}


NewGeneEinstein: Hope it helps
Similar questions