Chemistry, asked by Anonymous, 4 months ago

A microscope using suitable photons is employed to locate an electron in an atom within a distance of 0.1A. What is the uncertainly involved in the measurement of its velocity ?
✯ᴘʟᴇᴀsᴇ ᴀɴsᴡᴇʀ ɪɴ ᴅᴇᴛᴀɪʟ
✯ᴜɴᴡᴀɴᴛᴇᴅ ᴀɴsᴡᴇʀs ᴏʀ ᴏɴᴇ ᴡᴏʀᴅ ᴀɴsᴡᴇʀs ᴡɪʟʟ ʙᴇ ᴅᴇʟᴇᴛᴇᴅ

Answers

Answered by RJRishabh
17

Here's your answer in the given attachment.

value of h = 6.126×10^-34

mass of electron = 9.1 ×10^-31 kg

thanks

Attachments:
Answered by rocky200216
22

\huge\bf{\color{indigo}GIVEN} \\

  • A microscope using suitable photons is employed to locate an electron in an atom within a distance of 0.1 A.

 \\

\huge\bf\blue{TO\:FIND} \\

  • The uncertainty involved in the measurement of its velocity.

 \\

\huge\bf\orange{SOLUTION} \\

__________________________

\bf{\underline{\color{cadetblue}CONCEPT}} \\ ↓↓↓↓

Hɪsɴʙʀɢ Uɴʀɪɴɪʏ Pʀɪɴɪʟ

Aᴄᴄᴏʀᴅɪɴɢ ᴛᴏ ᴛʜɪs ᴘʀɪɴᴄɪᴘʟᴇ, “it is impossible to measure simultaneously the position and momentum of a microscopic particle with absolute accuracy”.

[N ➝ If one of them is measured with greater accuracy, the other becomes less accurate.]

\red\bigstar\:\bf\purple{\triangle{x}\:.\:\triangle{p}\:\geq\:\dfrac{h}{4\pi}\:~~or~~\:\triangle{x}\:.\:\triangle{v}\:\geq\:\dfrac{h}{4\pi{m}}\:} \\

\bf\pink{Where,}

  • ∆x = Uncertainty in position.

  • p = Uncertainty in momentum.

  • h = Planks Constant.

  • m = mass of microscopic particle.

  • ∆v = Uncertainty in velocity.

__________________________

\huge\red\checkmark \bf\purple{\triangle{x}\:.\:\triangle{v}\:\geq\:\dfrac{h}{4\pi{m}}\:} \\

\longmapsto\:\bf{\triangle{v}\:\geq\:\dfrac{h}{4\pi{m}\triangle{x}}\:} \\

\bf{\color{lime}We\:have,}

  • m = mass of electron \bf\gray{=\:9.1\times{10^{-31}}\:kg}

  • h = \bf\gray{6.626\times{10^{-34}}\:J.s}

  • π = \bf\gray{3.14}

  • x \bf{=\:0.1\:A°\:\gray{=\:0.1\times{10^{-10}}\:m}}

\longmapsto\:\bf{\triangle{v}\:=\:\dfrac{6.626\times{10^{-34}}}{4\times{3.14}\times{9.1\times{10^{-31}}}\times{0.1\times{10^{-10}}}}\:} \\

\longmapsto\:\bf{\triangle{v}\:=\:\dfrac{6.626\times{10^{-34}}}{11.4296\times{10^{-41}}}\:} \\

\longmapsto\:\bf{\triangle{v}\:=\:0.5797\times{10^{7}}\:} \\

\longmapsto\:\bf\green{\triangle{v}\:=\:5.797\times{10^{6}}\:m.s^{-1}} \\

\huge\red\therefore The uncertainty involved in the measurement of its velocity is \bf{\triangle{v}\:,i.e.\:\blue{5.797\times{10^{6}}\:m.s^{-1}}}.

Similar questions