Physics, asked by paddiem77, 6 months ago

A mild steel rod of 12 mm diameter was tested for tensile strength with the gauge length of 60 mm. Following observations were recorded: Final length = 80 mm; Final diameter = 7 mm; Yield load = 3.4kN and Ultimate load = 6.1kN. Calculate: a) Yield stress. ​​​​​​​​​ ​ b) Ultimate tensile stress. ​​​​​​ c) Percentage reduction in area. ​​​​​ d) Percentage elongation.

Answers

Answered by gyani54
8

Answer:

Explanation:

(i)Yields stress

=Wu/A

=3400/113

=30.1

(ii)Ultimate tensile stress

=Wu/A

=6100/113

=54N/mm sq (MPa)

(iii)Percentage reduction in area

=A-a / A

=113-38.5/113

=0.66 or 66%

(iv)Percentage elongation

=Max-min/min

=L-l ÷l ×100

=80-60÷60 ×100

=33.33%

Answered by NehaKari
2

Given :

initial diameter (D)  = 12 mm ; gauge length ( l)  = 60 mm ;  final length (L) = 80 mm;  initial diameter (d)   = 7 mm ; Yield load ( W_{y}  ) = 3.4 kN = 3400 N; ultimate load (W_{u}) = 6.1 kN = 6100 kN

To Find :

a) Yield stress. ​​​​​​​​​ ​ b) Ultimate tensile stress. ​​​​​​ c) Percentage reduction in area. ​​​​​ d) Percentage elongation in length.

Solution :

We know that original area of the rod (A) =  \frac{\pi }{4} x D^{2}

                                                                    = \frac{\pi }{4} x (12^{2})

                                                                    = \frac{\pi }{4} x 144 = 113 mm^{2}

Final Area (a) =   \frac{\pi }{4} x d^{2}

                      =   \frac{\pi }{4} x (7^{2}) = 38.5 mm^{2}

(a) We know, Yield Stress =  \frac{W_{y}}{A}

                                           = \frac{3400}{113}

                                           = 30.1 N/mm^{2} = 30.1 MPa

(b) We know, the ultimate tensile stress = \frac{W_{u} }{A}

                                                                  = \frac{6400}{113}

                                                                  = 54 N/mm^{2} = 54 MPa

(c) We know that percentage reduction in area = \frac{A - a}{a} x 100%

                                                                              = \frac{113 - 38.5}{113} x 100%

                                                                              = 66%

(d) We know that percentage elongation in length = \frac{L - l}{L} x 100%

                                                                                    = \frac{80 - 60}{80} x 100%

                                                                                    = 25%

 

Similar questions