Physics, asked by Anonymous, 9 months ago

A mild steel wire of length 1.0 m and cross-sectional area 0.50 x {10}^{-2}cm² is stretched, well within Its elastic limit, horizontally between two pillars. A mass of 100g is suspended from the mid-point of the wire. Calculate the depression at the mid-point.

Help __!!
Don't spam ___!!

Answers

Answered by Anonymous
139

Given :

Length of steel wire,l = 1m

cross sectional area,A = \sf\:0.5\times{10}^{-2}cm²

mass of 100 g is suspended from the mid of the wire .

To find :

The depression at the mid-point.

Solution :

Let x be the depression at the mid point .

and let length of wire be 2l.

From the Figure (attachment 1)

DB= x

AC = 2l

AD=DC=l= 0.5 m

AB=BC=\sf\:\sqrt{l{}^{2}+x{}^{2}}

m= 100g= 0.1kg

_________________________

intital length = AC=2l

Final length = AB+BC

=\sf\:\sqrt{l{}^{2}+x{}^{2}}

⇒Incease in legth= ∆l

= \sf\:AB+BC-2l

 \sf = 2 \sqrt{l {}^{2}  + x { }^{2} }  - 2l

 = 2l \sqrt{1 +  \sf \dfrac{x {}^{2} }{l {}^{2} } }  - 2l

Now use Binomial expansion

 = 2l(1 +   \sf\dfrac{x {}^{2} }{2l {}^{2} } ) - 2l

  \sf =  \dfrac{x {}^{2} }{l}

 \sf strain =  \dfrac{change \: in \: length}{original \: length}

 \sf \implies strain =  \frac{ \triangle l}{2l}

  \sf =  \dfrac{ \frac{x {}^{2} }{l} }{2l}  =  \dfrac{x {}^{2} }{2l {}^{2} } ...(1)

Now ,draw a free body diagram of suspended mass ,m (attachment 2)

If t is the tension in the wire ,then

 \sf2t \cos \theta = mg

[from the free body diagram]

 \sf \implies t =  \dfrac{mg}{2 \cos \theta}

From the Figure;

 \sf \cos \theta =  \dfrac{x}{ \sqrt{l {}^{2} + x {}^{2}  } }

Now use Binomial expansion in the Denominator

 \sf \sqrt{l {}^{2}  + x {}^{2} }  = l \sqrt{1 +  \frac{x {}^{2} }{l {}^{2} } }

 \sf = l(1 +  \frac{x  {}^{2} }{2l {}^{2} } )

since, x<<l,  \sf so \:1 &gt;  &gt;  \frac{x {}^{2} }{2l {}^{2} }

 \sf \implies1 +  \frac{x ^{2} }{2l {}^{2} }  \approx1

Thus,

 \sf \cos \theta =  \frac{x}{l}

Therefore,

 \sf t =  \dfrac{mgl}{2x}

We know that

 \sf stess =  \dfrac{norml \: force}{area}

 \sf =  \dfrac{mgl}{2Ax}

 \sf youngs  \: modulus =  \dfrac{normal \: stress}{strain}

We know that for steel Young's modulus

= \sf\:2\times10{}^{11}

 \sf \implies Y =  \dfrac{mgl}{2ax}  \times  \dfrac{2l {}^{2} }{x {}^{2} }

 \sf\implies x = l( \frac{mg}{YA}) {}^{ \frac{1}{3} }

Now put the given values

\sf{x=0.5\left[\dfrac{0.1\times9.8}{2\times10^{11}\times0.5\times10^{-6}}\right]^{\frac{1}{3}}}\\\\\\\sf{x=0.5\left[\dfrac{0.1\times9.8}{2\times\dfrac{5}{10}\times10^{11}\times10^{-6}}\right]^{\frac{1}{3}}}\\\\\\\sf{x=0.5\left[0.1\times10^{-11}\times10^6\times9.8\right]^{\frac{1}{3}}}\\\\\\\sf{x=0.5\left(9.8\times10^{-6}\right)^{\frac{1}{3}}}\\\\\\\sf{x=0.5\times(9.8)^{\frac{1}{3}}\times10^{-2}}\\\\\\\sf{x=0.5\times2.14\times10^{-2}}\\\\\\\sf{x=1.07\times10^{-2}}\\\\\\\sf{x=1.07\ cm}

Therefore;

\purple{\boxed{\large{\bold{Depression\:at\:the\:mid\:point=1.074cm}}}}

__________________________

Binomial Expansion:

\bf (1+x)^{n}= 1+ nx +  \frac{n(n-1)}{2!}x^{2} +\frac{n(n-1)(n-2)}{3!} x^{3}+..

Attachments:
Answered by shadowsabers03
16

The fig. given below shows the steel wire of length \sf{L=1\ m} which becomes \sf{L'} after stretching. Let the depression at the midpoint be \sf{d.}

\setlength{\unitlength}{1mm}\begin{picture}(5,5)\put(-25,0){\line(1,0){50}}\put(0,0){\line(0,-1){5}}\put(0,-5){\line(5,1){25}}\put(0,-5){\line(-5,1){25}}\multiput(-12.5,3)(25,0){2}{\scriptsize\text{$\sf{\dfrac{L}{2}}$}}\multiput(-12.5,-8)(25,0){2}{\scriptsize\text{$\sf{\dfrac{L'}{2}}$}}\put(1,-3){\scriptsize\textsf{d}}\put(-3,-3.5){$\theta$}\end{picture}

Thus we have,

\longrightarrow\sf{L'=2\sqrt{\left(\dfrac{L}{2}\right)^2+d^2}}

\longrightarrow\sf{L'=2\sqrt{\dfrac{L^2}{4}+d^2}}

\longrightarrow\sf{L'=2\sqrt{\dfrac{L^2+4d^2}{4}}}

\longrightarrow\sf{L'=\sqrt{L^2+4d^2}}

\longrightarrow\sf{L'=\left[L^2+4d^2\right]^{\frac{1}{2}}}

Putting \sf{L=1,}

\longrightarrow\sf{L'=\left[1+4d^2\right]^{\frac{1}{2}}\quad\quad\dots(1)}

We consider a small depression \sf{d,} so that \sf{d^2} can be neglected.

We know that, for \sf{|x|\ \textless\textless\ 1,\ \left[1+x\right]^\frac{1}{2}\approx1+\dfrac{x}{2}.} Hence (1) becomes,

\longrightarrow\sf{L'=1+2d^2\right\quad\quad\dots(2)}

Let \sf{\theta} be the angle made by the depression with the half of new length of the wire, as shown in the fig. Then,

\longrightarrow\sf{\cos\theta=\dfrac{d}{\left(\dfrac{L'}{2}\right)}}

\longrightarrow\sf{\cos\theta=\dfrac{2d}{L'}}

From (2),

\longrightarrow\sf{\cos\theta=\dfrac{2d}{1+2d^2}}

Well, \sf{d^2} could be neglected, right?!

\longrightarrow\sf{\cos\theta=2d\quad\quad\dots(3)}

Let the extension in the length of the steel wire be \sf{\Delta L,} which is,

\longrightarrow\sf{\Delta L=L'-L}

From (2),

\longrightarrow\sf{\Delta L=1+2d^2-1\quad\quad[\,L=1\ m\,]}

\longrightarrow\sf{\Delta L=2d^2}

The fig. given shows the steel wire of cross sectional area \sf{A=0.5\times10^{-2}\ cm^2=0.5\times10^{-6}\ m^2,} with \sf{100\ g=0.1\ kg} mass suspended from its center.

\setlength{\unitlength}{1mm}\begin{picture}(5,5)\multiput(-25,0)(4,0){13}{\line(1,0){2}}\put(0,0){\line(0,-1){5}}\put(0,-5){\line(5,1){25}}\put(0,-5){\line(-5,1){25}}\put(0,-5){\vector(0,-1){10}}\put(-1,-19){$\sf{F}$}\put(25,0){\vector(4,1){15}}\put(-25,0){\vector(-4,1){15}}\multiput(-25,0)(50,0){2}{\vector(0,1){5}}\multiput(-43,0)(84,0){2}{$\sf{A}$}\multiput(-25.6,6)(42,0){2}{$\sf{A\cos\theta}$}\multiput(-3,-3.5)(4,0){2}{$\theta$}\multiput(-28,2)(54.5,0){2}{$\theta$}\end{picture}

The stretching force is nothing but the weight of the mass, i.e.,

\longrightarrow\sf{F=1\ N\quad[\,g=10\ m\,s^{-2}\,]}

As in the fig., we should not consider vertical component of \sf{A} because the vectors \sf{A\ \&amp;\ F} are not acting on same line thus vertical component of

We take the net area acting along the vertical, thus,

\longrightarrow\sf{A'=2A\cos\theta}

From (3),

\longrightarrow\sf{A'=2d\times10^{-6}}

We know, Young's Modulus of Steel is,

\longrightarrow\sf{Y=2\times10^{11}\ Pa}

\longrightarrow\sf{\dfrac{FL}{A'\,\Delta L}=2\times10^{11}\ Pa}

Putting values for each,

\longrightarrow\sf{\dfrac{1}{2d\times10^{-6}\times2d^2}=2\times10^{11}\ Pa}

\longrightarrow\sf{\dfrac{1}{d^3}=0.8\times10^{6}\ m^{-3}}

\longrightarrow\sf{d^3=1.25\times10^{-6}\ m^3}

\longrightarrow\sf{\underline{\underline{d=1.077\ cm}}}

Hence the depression is nearly \mathbf{1.077\ cm.}

Similar questions