Math, asked by lopa9661, 1 year ago

A milk container is made of metal sheet in the shape of frustum of cone where its volume is 10459 3/7 cm^3 . The radii of its lower and upper circular ends are 8 and 30 cm

Answers

Answered by VelvetBlush
7

Given:

Given:r1 = 20cm,

Given:r1 = 20cm,r2 = 80cm

Given:r1 = 20cm,r2 = 80cmLet h cm be the height of the milk container

Given:r1 = 20cm,r2 = 80cmLet h cm be the height of the milk containerVolume of the milk container = Volume of frustum of cone

=  \sf\green{\frac{1}{3} \pi \: h( {r1}^{2}  +  {r2}^{2}  + r1 + r2) = 10459 \frac{3}{7}  {cm}^{3} }

=  \sf\green{\frac{1}{3}  \frac{22}{7}  \times h(( {20)}^{2}  +  {8}^{2}  + 20 \times 8)}

= \sf\green{ \frac{73216}{7}  {cm}^{3}}

= \sf\green{ \frac{1}{3}   \times \frac{22}{7}  \times h \times 624 =  \frac{73216}{7}}

\therefore \sf\green{h =  \frac{73216 \times 3}{22 \times 624}  = 16cm}

Slant height of the frustum =

\longrightarrow\sf\red{l =  \sqrt{ {h}^{2}  +  {(r1 - r2)}^{2} } }

\longrightarrow\sf\red{ \sqrt{ {(16)}^{2}  -  {(20 - 8)}^{2} } cm}

\longrightarrow\sf\red{ \sqrt{256 + 144} cm}

\longrightarrow\sf\red{ \sqrt{400} cm}

\longrightarrow\sf\red{20cm}

Area of the metal sheet used in the container =

= CSA of the frustum + Area of the base

= \sf\blue{\pi(r1 + r2)l + \pi {r2}^{2} }

= \sf\blue{( \frac{22}{7} (20 + 8) \times 20 +  \frac{22}{7}  \times 8 \times 8) {cm}^{2} }

=  \sf\blue{\frac{22}{7} (560 + 64) {cm}^{2}}

= \sf\blue{ \frac{22}{7} \times 624 {cm}^{2}}

Cost of the metal at the rate of Rs. 1.40 per cm square =

=  \sf\orange{Rs.\frac{22}{7}  \times 624 \times 1.40}

= {\boxed{\sf{\orange{Rs.2745.60}}}}

Similar questions