Math, asked by ManikasdFan, 11 months ago

A milk tanker cylindrical in shape having diameter 2 m and length 4.2 m supplies milk to the two booths in the ratio 3:2. One of the milk booths has cuboid vessels having base area 3.96 sq. m. and the other has a cylindrical vessel having radius 1 m. Find the level of milk in each of the vessels.
 \sf \:( use \: \pi =  \frac{22}{7})

Answers

Answered by Anonymous
81

  \huge\large{\boxed{\underline{\underline{\tt{\pink{Solution:-}}}}}}

 \bf \: For \: cylindrical \: milk \: tank

 \rm \: Radius \: (r) =  \frac22 \: m = 1m \\

 \rm \: Length \: (h) = 4.2 \: m =  \frac{42}{10} \: m \\

 \sf \red{ \therefore}  \:  \  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \rm \: Volume

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \rm = \pi r {}^{2} h =  \frac{22}{7}(1) {}^{2}  \frac{42}{10} \\

  \:  \:  \:  \:  \:  \: \rm = 22 \times  \frac{6}{10} = 22 \times  \frac{3}{5} =  \frac{66}{5} \: m {}^{3}  \\

 \sf \: Given \: ratio =  \:  \bf\red {3 \ratio2}

 \red{\therefore} \rm \:  \:  \:  \:  \: Sum \: of \: ratios = 3 + 2 = 5

 \red{\therefore} \:   \rm \: Volume \: of \: milk \: supplied \: to \: first \: booth

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \rm =  \frac35 \times  \frac{66}{5} =  \frac{198}{25} \: m {}^{3}  \:  \:  \:  \:  \:  \:  \:  \:...  \bf(1) \\

 \rm \: Volume \: of \: milk \: supplied \: to \: second \: booth

 \:  \:  \:  \rm =  \ \frac{2}{5} \times  \frac{66}{5} \: cm {}^{3}  =  \frac{132}{25} \: m {}^{3}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: ... \bf(2) \\

 \bf \: For \: first \: booth \: ( \sf \red{cuboidal \: vessel})

 \rm \: Let \: the \: level \: of \: milk \: be \:  \sf \red{h} \rm \: m.

 \rm \: Then, \: Volume \: of \: milk.

  \:  \:  \: \:  \:  \:  \tt \red{ = Area \: of \: base \times Height}

 \:  \:  \:  \:   \:  \:  \: \:  \:  \rm = 3.96h \: m {}^{3} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: ... \bf{(3)}

 \bf \: From \: (3) \: and \: (1),

  \:  \:  \:  \:  \:  \: \rm \: 3.96h =  \frac{198}{25} \implies \frac{396 \: h}{100} =  \frac{198}{25} \\

 \implies \:  \:  \:  \:  \:  \:  \rm \: h =  \frac{198}{25} \times  \frac{100}{396} =  \frac{4}{2} = 2 \: m \\

 \bf \: For \: second \: booth \: (\sf \red{cylindrical \: vessel})

 \rm \: Let \: the \: level \: of \: milk \: be \:  \bf \red{h} \rm \: m.

 \rm \: Then,

 \rm \: Volume \: of \: milk

 \:  \:  \:  \:  \:  \rm  = \:  \pi R {}^{2} H = \pi(1) {}^{2} H =  \frac{22}{7}H \:  \:  \:  \:  \:  \: ... \bf{(4)} \\

 \rm \: From \: (4) \: and \: (2),

  \:  \:  \:  \:  \:  \: \frac{22}{7} \: H =  \frac{132}{25} \\

 \red \therefore \:  \:  \:  \:  \:  \:  \rm \: H =  \frac{132}{25} \times  \frac{7}{22} =  \frac{6 \times 7}{25} =  \frac{42}{25} \: m \\

 \:  \:  \: \:  \:  \:   \:  \:  \rm =  \frac{42 \times 4}{25 \times 4} =  \frac{168}{100} =  \tt \red{1.68 \: m} \\

Similar questions