Math, asked by saurabhsaurabh8243, 1 year ago

A milkman uses a container, in the shape of frustum of a cone, to store milk. The container open from the top, is of height 40 cm with radii of its lower and upper circular ends as 14 cm and 35 cm respectively. Find the volume of milk (in litres) which can completely fill the container. If he sells the milk at ` 35 per litre, for how much amount he can sell the whole milk ?

Answers

Answered by aarm20803
0

Answer:

Step-by-step explanation:

given: h=40 cm

Ri=14cm, Rii=35cm

per l milk=35 rs.

to find:volume of milk in liters.

solution:

volume of frustum of cone= pi/3 [Ri2+Rii2+R1+R2] h

                                            =22/7[14*14+35*35+14+35] 40

                                            =22/7 [1321+49]40

                                            =22/7*1370*40

                                            =22/7*54800

                                            =22*7827

                                            = 172216cu.cm

milk it contains = 172216/1000 .                ...... [1000cu.cm=1liter]

                         =172.216 liters

                         =aprox..172liters

    milk sold = 35*172

                     =rs.6020

 hope it help . please mark as brainliest.

Answered by indirapancholi0
1

Answer:

Step-by-step explanation:

Attachments:
Similar questions