a minus b into X + a + b into Y is equal to a square minus 2 a b minus b square A + B Into X + a + b into Y is equal to a square + b square
Answers
Answer:
Value of x is a + b and y is -2ab/(a+b).
Step-by-step explanation:
Given system of equation,
( a - b )x + ( a + b )y = a² - 2ab - b² ............................(1)
( a + b )x + ( a + b )y = a² + b² ..........................(2)
We need to solve for x and y.
We solve by elimination method.
Subtract (2) from (1),
( a - b )x + ( a + b )y - ( ( a + b )x + ( a + b )y ) = a² - 2ab - b²- ( a² + b² )
( a - b )x + ( a + b )y - ( a + b )x - ( a + b )y = a² - 2ab - b²- a² - b²
( a - b )x - ( a + b )x = - 2ab - 2b²
( a - b - a - b )x = -2b ( a + b )
( -2b )x = -2b( a + b )
x = -2b( a + b ) / (-2b)
x = a + b
put this value in (1),
( a - b )( a + b ) + ( a + b )y = a² - 2ab - b²
a² - b² + ( a + b )y = a² - 2ab - b²
( a + b )y = a² - 2ab - b² - a² + b²
( a + b )y = -2ab
y = -2ab/(a+b)
Therefore, Value of x is a + b and y is -2ab/(a+b).
Answer:
Step-by-step explanation:
Given
(a-b)x+(a+b)y=a²-2ab-b² --(1)
(a+b)x+(a+b)y=a²+b² -----(2)
/* Subtract equation (1) from equation (2), we get
(a+b)x-(a-b)x=a²+b²-(a²-2ab-b²)
=> [a+b-(a-b)]x=a²+b²-a²+2ab+b²
=> (a+b-a+b)x=2b²+2ab
=> 2bx= 2b(b+a)
Substitute x = a+b in equation (1) ,we get
Therefore,
•••♪