Math, asked by Ninjahathori, 1 year ago

a minus b whole square cos square C by 2 + a + b whole square sin square C by 2 is equals to C square to prove

Answers

Answered by FelisFelis
53

Answer:

we need to prove that:

(a - b)^{2} cos^{2}\frac{c}{2}+(a+b)^{2}sin^{2}\frac{c}{2} = c^{2}

Left hand side

(a - b)^{2} cos^{2}\frac{c}{2}+(a+b)^{2}sin^{2}\frac{c}{2}

since,(a+b)^{2} =a^{2}+b^{2}+2ab\;\text{and}\;(a-b)^{2} =a^{2}+b^{2}-2ab

(a^{2} +b^{2} -2ab)cos^{2}\frac{c}{2}+(a^{2} +b^{2} -2ab)sin^{2}\frac{c}{2}

(a^{2} +b^{2})(cos^{2}\frac{c}{2}+sin^{2}\frac{c}{2})-2ab(cos^{2}\frac{c}{2}-sin^{2}\frac{c}{2})

Since, sin^{2}\theta+cos^{2}\theta=1 and cos^{2}\theta+sin^{2}\theta=cos2\theta

(a^{2} +b^{2})(1)-2ab(cos c)

a^{2} +b^{2}-2ab(cos c)

by the law of cosines (a^{2} +b^{2}-2ab(cos c)=c^{2})

c^{2} =Right hand side

Hence, proved

Answered by kotanivitesh1603
1

Answer:

i hope this may help you..

Attachments:
Similar questions