A most economical trapezoidal section is required to give a maximum discharge
of 2M mP/s of water. The slope of the channel bottom is 1 in 15MM. Taking
C = 7MI in Chezy’s equationI determine the dimension of the channel.
Answers
Answer:
Conditions which should be satisfied by a trapezoidal section to be most efficient
1) Top width of channel (T) = 2 × Length of side slope
2) Hydraulic radius (R) = ½ × depth of flow (y)
3) Side slope = 60°
Formulas to be remembered
1) \(R = \frac{y}{2}\)
2) \(Width\;of\;channel\;\left( B \right) = \frac{{2y}}{{\sqrt 3 }}\)
3) \(Area\;of\;channel = \sqrt 3 \times {y^2}\)
Relation between manning coefficient and Chezy constant is given by
\(n = \frac{{{R^{\frac{1}{6}}}}}{C}\)
We know, from chezy equation
\(V = C \times \sqrt {R \times S} \)
\(Q = A \times C \times \sqrt {R \times S} \)
Calculation
Given,
Q = 21.5 m3/s, S = 1 in 2500, C = 70 m1/2/s
\(Q = A \times C \times \sqrt {R \times S} \)
\(21.5 = \sqrt 3 \times {y^2} \times C \times \sqrt {\frac{y}{2}} \times \sqrt S \)
\(21.5 = \sqrt 3 \times {y^2} \times 70 \times \sqrt {\frac{y}{2}} \times \sqrt {\frac{1}{{2500}}} \)
\(21.5 = \sqrt 3 \times {y^2} \times 70 \times \sqrt {\frac{y}{2}} \times \frac{1}{{50}}\)
\({y^{\frac{5}{2}}} = \frac{{21.5\; \times \;\sqrt 2\; \times \;50}}{{70\sqrt 3 }}\)
y = 2.75 m
∴ Depth of the flow is 2.75 m
Now, R = y/2 = 2.75/2 = 1.375 m
∴ Hydraulic Radius is 1.375 m
\(B = \frac{{2y}}{{\sqrt 3 }} = 2 \times \frac{{2.75}}{{\sqrt 3 }} = 3.175\;m\)
Value of manning’s coefficient
\(n = \frac{{{R^{\frac{1}{6}}}}}{C} = \frac{{{{1.375}^{\frac{1}{6}}}}}{{70}} = 0.015\)
∴ manning’s coefficient = 0.015