Math, asked by bhoomi23garg, 3 months ago

A motor boat whose speed in still water is 18 km/h, takes 1 hour more to go 24
km upstream than to return downstream to the same spot. Find the speed of
the stream​

Answers

Answered by EliteZeal
43

\underline{\underline{\huge{\gray{\tt{\textbf Answer :-}}}}}

 \:\:

\sf\large\bold{\orange{\underline{\blue{ Given :-}}}}

 \:\:

  • Speed of moter boat in still water is 18 km/hr

  • While going with upstream takes 1 hr more then going with downstream for the same 24 km

 \:\:

\sf\large\bold{\orange{\underline{\blue{ To \: Find :-}}}}

 \:\:

  • The speed of stream

 \:\:

\sf\large\bold{\orange{\underline{\blue{ Solution :-}}}}

 \:\:

  • Let the speed of stream be 's'

  • Let the time taken in stream be 'T1'

  • Let the time taken in downstream be 'T2'

 \:\:

 \underline{\bold{\texttt{Speed in upstream :}}}

 \:\:

➠ 18 - s

 \:\:

 \underline{\bold{\texttt{Showed in downstream :}}}

 \:\:

➠ 18 + s

 \:\:

We know that ,

 \:\:

 \bf \boxed { Time = \dfrac { Distance } { Speed } } ⚊⚊⚊⚊ ⓵

 \:\:

For upstream

 \:\:

  • Time = T1

  • Distance = 24 km

  • Speed = 18 - s

 \:\:

Putting the values in ⓵

 \:\:

: : ➜  \bf Time = \dfrac { Distance } { Speed }

 \:\:

: ➜  \bf T1 = \dfrac { 24 } { 18 - s } ⚊⚊⚊⚊ ⓶

 \:\:

For downstream

 \:\:

  • Time = T2

  • Distance = 24 km

  • Speed = 18 + s

 \:\:

Putting the values in ⓵

 \:\:

: : ➜  \bf Time = \dfrac { Distance } { Speed }

 \:\:

: ➜  \bf T2 = \dfrac { 24 } { 18 + s } ⚊⚊⚊⚊ ⓷

 \:\:

Given that ,time taken in upstream is 1 hour more than time taken in downstream for 24 km

 \:\:

Thus,

 \:\:

: ➜ T1 = T2 + 1

 \:\:

From ⓶ & ⓷

 \:\:

: ➜  \sf \bigg\lgroup\dfrac { 24 } { 18 - s }\bigg\rgroup = \bigg\lgroup\dfrac { 24 } { 18 + s }+ 1\bigg\rgroup

 \:\:

: ➜  \sf \bigg\lgroup\dfrac { 24 } { 18 - s }\bigg\rgroup = \bigg\lgroup\dfrac { 24 + 18 + s} { 18 + s }\bigg\rgroup

 \:\:

: ➜  \sf \bigg\lgroup\dfrac { 24 } { 18 - s } \bigg\rgroup= \bigg\lgroup\dfrac { 42 + s} { 18 + s }\bigg\rgroup

 \:\:

: ➜ (42 + s)(18 - s) = 24(18 + s)

 \:\:

: ➜ 756 - 42s + 18s - s² = 432 + 24s

 \:\:

: ➜ s² + 24s + 42s - 18s - 756 + 432 = 0

 \:\:

: ➜ s² + 48s - 324 = 0

 \:\:

: ➜ s² + 54s - 6s - 324 = 0

 \:\:

: ➜ s(s + 54) -6(s + 54) = 0

 \:\:

: ➜ (s + 54)(s - 6) = 0

 \:\:

  • s = - 54
  • s = 6

 \:\:

As speed can't be negative

 \:\:

Thus ,

 \:\:

: : ➨ s = 6 km/hr

 \:\:

  • Hence the speed of stream is 6 km/hr
Answered by VarshaS553
0

Let the speed of the stream be x km\hr.

The speed of the boat upstream = (18 - x) km/hr

The speed of the boat downstream = (18 + x) km/hr

Distance = 24 km

As given in the question,

Time for upstream = 1 + Time for downstream

24/(18 - x) = 1 + 24/(18 + x)

24/(18 - x) - 24/(18 + x) = 1

x2 + 48x - 324 = 0

(x + 54)(x - 6) = 0

x ≠ - 54 as speed cannot be negative.

x = 6

The speed of the stream = 6 km/hr

Similar questions