Math, asked by SarahEmad2006, 2 months ago

 A motor boat whose speed is 18 km/h in still water takes 1 hour more to go 24 km upstream than to return downstream to the same spot. Find the speed of the stream.


It's a question of arithmetic progression
@azim786ullah please bata do tum to expert ho​

Answers

Answered by Anonymous
11

\rightarrow\small\tt \purple{Given}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

  \circ\small  \tt{  \: Distance = 24 km}

 \circ\small \tt{  \: Speed = \: 18km \: per \: hr  }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \circ\small\tt{ \:  Speed  \: of \:  upstream = 18 - x}

 \circ\small\tt{  \: Speed  \: of \:  downstream = 18   +  x}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \circ\tt \purple{ \: Time \:  =  \frac{Distance}{Speed} }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \purple\rightarrow\small\tt{ATQ}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

\rightarrow\small\tt \purple{Equation  \: Becomes}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \rightarrow\tt \purple{  \frac{24}{18 - x}  = } \tt{ \frac{24}{18  +  x} + 1}

 \rightarrow\tt \purple{  \frac{24}{18 - x}  = } \tt{ \frac{1(24)  +  1(18 - x)}{18  +  x} }

 \rightarrow\tt \purple{  \frac{24}{18 - x}  = } \tt{ \frac{24 + 18  +  x}{18  +  x} }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \purple \rightarrow\small\tt{Do}\small\tt\purple{ \:Cross \:  Multiplication}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \rightarrow \small\tt \purple{ 24(18 + x)  = } \tt{(24 + 18 + x)(18 - x) }

 \rightarrow \small\tt \purple{ 432 + 24x  = } \tt{24(18 - x) + 18 (18 - x)+ x(18 - x) }

 \rightarrow \small\tt \purple{ 432 + 24x  = } \tt{432 - 24x + 324 - 18x+ 18x -  {x}^{2}  }

 \rightarrow \small\tt \purple{  \cancel{432}    - \cancel{ 432}+ 24x + 24x  = } \tt{ 324   - \cancel{18x}+  \cancel{18x} -  {x}^{2}  }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \rightarrow \small\tt \purple{  {x}^{2}  + 48x - 324  = } \tt{ 0}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \purple \rightarrow\small\tt{By}\small\tt\purple{ \: Factorisation \:  Method}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \rightarrow \small\tt \purple{  {x}^{2}  + 54x  - 6x- 324  = } \tt{ 0}

 \rightarrow \small\tt \purple{  x(x + 54)  - 6(x + 54)  = } \tt{ 0}

 \rightarrow \small\tt \purple{  (x + 54) (x- 6)  = } \tt{ 0}

 \rightarrow \small\tt \purple{  x  + 54 =  } \tt{ 0}

 \boxed{\rightarrow \small\tt \purple{  x =     } \tt{ ( - 54)}}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \rightarrow \small\tt \purple{ x- 6  = } \tt{ 0}

  \boxed{\rightarrow \small\tt \purple{ x  = } \tt{ 6}}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

x value can't be negative so that's why we take x = 6

Answered by ITzUnknown100
2

Answer:

Just take the positive value 6

Similar questions