Math, asked by aditya78632, 5 months ago

A motor boat whose speed is 18km/h in still water takes 1. hour more to go 24 km upstream than to return downstream to the same spot . Find the speed of the stream .​

Answers

Answered by kirankumarmeka
5

Answer:

Given parameters:

The speed of the motorboat in still water =18 kmph

Let us consider

The speed of the stream = s

Speed of boat upstream = Speed of a boat in still water – the speed of a stream

Speed of boat upstream = 18 – s

Speed of boat downstream = Speed of a boat in still water + speed of a stream

Speed of boat downstream = 18 + s

Time is taken for upstream = Time taken to cover downstream + 1

time =distance/speed

DistanceupstreamSpeedupstream=DistancedownstreamSpeeddownstream+1

24/ (18 – s) = [24/(18 + s)] + 1

24(18+s) = 24(18−s) + (18−s)(18+s)

s2 + 48s − 324 = 0

s2 + 54s − 6s − 324 = 0

(s+54)(s−6) = 0

s = 6,−54 but

s ≠−54

Since the speed of steam cannot be negative.

∴ s = 6km/hr

Step-by-step explanation:

MARK ME AS BRAINLIEST.PLEASE

Answered by VarshaS553
13

Let the speed of the stream be x km\hr.

The speed of the boat upstream = (18 - x) km/hr

The speed of the boat downstream = (18 + x) km/hr

Distance = 24 km

As given in the question,

Time for upstream = 1 + Time for downstream

24/(18 - x) = 1 + 24/(18 + x)

24/(18 - x) - 24/(18 + x) = 1

x2 + 48x - 324 = 0

(x + 54)(x - 6) = 0

x ≠ - 54 as speed cannot be negative.

x = 6

The speed of the stream = 6 km/hr

Similar questions