Math, asked by BrainlyLucifer, 2 months ago

A motor boat, whose speed is 20 km/hr in still water takes 1 hour more to go 48 km upstream than to return downstream to the same spot. Find the speed of the stream.​

Answers

Answered by XxSonaxX
150

Step-by-step explanation:

\huge\mathfrak\orange{Question:-}

A motor boat, whose speed is 20 km/hr in still water takes 1 hour more to go 48 km upstream than to return downstream to the same spot.

Find the speed of the stream.

\huge\mathfrak\red{Answer:-}

\huge\mathbb\green{Solution⇛}

Let,  \: the  \: speed  \: of  \: the \:  stream  \: be \:  x \:  km/hr \\ Speed \:  of \:  boat \:  in  \: still \:  water \:  = \: 20 \:  km/hr

∴ \: Speed  \: of \:  boat  \: with \:  downstream  \: 20+x \:  km/hr \\ ∴  \: Speed \:  of  \: boat  \: with \:  upstream \:  20−x  \: km/hr

As \:  per  \: given  \: condition

 \frac{48}{20 - x}  -  \frac{48}{20  +  x}  =1

  ⟹48 \: [ \frac{1}{20 - x}  -  \frac{1}{20 + x} ] \:  = 1

 ⟹[ \frac{20 + x  \: -  \: 20 + x}{(20 - x) \: (20 + x)} ] \:  =  \frac{1}{48}

⟹  \:  \frac{2x}{400 - x {}^{2} }  =  \frac{1}{48}

 ⟹\: 96x \: = \: 400 \:  - x {}^{2}

⟹x {}^{2} +96x−400=0

⟹x {}^{2} +100x−4x−400

⟹ \: x(x+100)−4(x+100)=0

⟹ \: (x−4)(x+100)=0

Either,  \: x=4 or x=−100

⇝∵  \: Speed  \: cannot  \: be \:  negative \:  \\  ⇝∴ \: x=4  \: km/hr \:  is \:  considered.

\huge\mathbb\green{➽hence,  the \:  speed \:  of  \: the \:  stream \:  =4 \:  km/hr}

Answered by Anonymous
4

\huge\mathbb\fcolorbox{purple}{lavenderblush}{✰Answer}

Let, the speed of the stream be x km/hr

Speed of boat in still water =20 km/hh

\begin{gathered}∴ \: Speed \: of \: boat \: with \: downstream  \: 20+x \:  km/hr \\ ∴  \: Speed \: of \: boat \: with \: upstream \:  20−x  \: km/hr\end{gathered}

As per given condition

\frac{48}{20 - x} - \frac{48}{20 + x} =1

⟹48 \: [ \frac{1}{20 - x} - \frac{1}{20 + x} ] \: = 1

⟹[ \frac{20 + x \: - \: 20 + x}{(20 - x) \: (20 + x)} ] \: = \frac{1}{48}

⟹ \: \frac{2x}{400 - x {}^{2} } = \frac{1}{48}

⟹\: 96x \: = \: 400 \: - x {}^{2}

⟹x {}^{2} +96x−400=0

⟹x {}^{2} +100x−4x−400

⟹ \: x(x+100)−4(x+100)=0⟹x(x+100)−4(x+100)=0

⟹ \: (x−4)(x+100)=0⟹(x−4)(x+100)=0

Either, x=4 or x=−100

\begin{gathered}⇝∵  \: Speed \: cannot \: be \: negative \: \\  ⇝∴ \: x=4  \: km/hr \: is \: considered.\end{gathered}

 \huge\mathbb\green{➽hence,  the \: speed \: of \: the \: stream \:  =4 \:  km/hr}

Similar questions