Physics, asked by ajayarchanasingh2000, 1 month ago

A motor car slows down from 72km/hr to 36 km/he over a distance of 25 m.if the brakes are applied with the same force, calculate distance traveled by the car and total time in which the car comes to rest.​

Answers

Answered by VishalSharma01
116

Answer:

Explanation:

Given,

  • Initial velocity of motor car, u = 72 km/h = 72 × 5/18 = 20 m/s
  • Final velocity of motor car, v = 36 km/h = 36 × 5/18 = 10 m/s
  • Distance covered by motor car is, s = 25 m

To Find,

  • Distance covered, s
  • Time taken, t

Formula to be used,

  • 1st equation of motion, v = u + at
  • 3rd equation of motion, v² - u² = 2as

Solution,

At 1st, we will find acceleration,

v² = u² + 2as

⇒ 10² = 20² + 2a × 25

⇒ 50a + 400 = 100

⇒ 50a = 100 - 400

⇒ 50a = -300

⇒ a = - 300/50

a = - 6 m/s²

Here, the acceleration is - 6 m/s².

Now, we will find out time taken,

v = u + at

⇒ 0 = 20 + (- 6) × t   (v = 0 m/s, as car stops)

⇒ - 6t = 20

⇒ t = 20/6

t = 3.33 seconds

Hence, the time taken is 3.33 seconds.

Now, the distance covered,

v² - u² = 2as

⇒ (0) - (20)² = 2 × (- 6) × s

⇒ 400 = -12s

⇒ 400/12 = s

s = 33.33 m.

Hence, the distance covered is 33.33 m.

Answered by Anonymous
103

Answer:

Given :-

  • A motor car slows down from 72 km/hr to 36 km/hr over a distance of 25 m.
  • The brakes are applied with the same force.

To Find :-

  • What is the distance travelled by the car.
  • What is the total time in which the car comes to rest.

Formula Used :-

\clubsuit First Equation Of Motion Formula :

\mapsto \sf\boxed{\bold{\pink{v =\: u + at}}}

\clubsuit Third Equation Of Motion Formula :

\mapsto \sf\boxed{\bold{\pink{v^2 =\: u^2 + 2as}}}\\

where,

  • v = Final Velocity
  • u = Initial Velocity
  • a = Acceleration
  • t = Time Taken
  • s = Distance Travelled

Solution :-

First, we have to convert km/h into m/s :

Initial Velocity :

\implies \sf Initial\: Velocity =\: 72\: km/h

\implies \sf Initial\: Velocity =\: 72 \times \dfrac{5}{18}\: m/s\: \bigg\lgroup \sf\bold{\pink{1\: km/h =\: \dfrac{5}{18}\: m/s}}\bigg\rgroup\\

\implies \sf Initial\: Velocity =\: \dfrac{\cancel{360}}{\cancel{18}}\: m/s

\implies \sf \bold{\purple{Initial\: Velocity =\: 20\: m/s}}

Final Velocity :

\implies \sf Final\: Velocity =\: 36\: km/h

\implies \sf Final\: Velocity =\: 36 \times \dfrac{5}{18}\: m/s\: \: \bigg\lgroup \sf\bold{\pink{1\: km/h =\: \dfrac{5}{18}\: m/s}}\bigg\lgroup\\

\implies \sf Final\: Velocity =\: \dfrac{\cancel{180}}{\cancel{18}}\: m/s

\implies \sf\bold{\purple{Final\: Velocity =\: 10\: m/s}}

Now, we have to find the acceleration :

Given :

  • Initial Velocity = 20 m/s
  • Final Velocity = 10 m/s
  • Distance Travelled = 25 m

According to the question by using the formula we get,

\implies \sf v^2 =\: u^2 + 2as

\implies \sf (10)^2 =\: (20)^2 + 2 \times a(25)

\implies \sf 100 =\: 400 + 2 \times 25a

\implies \sf 100 =\: 400 + 50a

\implies \sf 100 - 400 =\: 50a

\implies \sf - 300 =\: 50a

\implies \sf \dfrac{- \cancel{300}}{\cancel{50}} =\: a

\implies \sf - 6 =\: a

\implies \sf \bold{\green{a =\: - 6\: m/s^2}}

Now, we have to find the distance travelled :

Given :

  • Final Velocity = 0 m/s
  • Initial Velocity = 20 m/s
  • Acceleration = - 6 m/

According to the question by using the formula we get,

\longrightarrow \sf (0)^2 =\: (20)^2 + 2 \times (- 6)s

\longrightarrow \sf 0 =\: 400 + (- 12)s

\longrightarrow \sf 0 - 400 =\: - 12s

\longrightarrow \sf {\cancel{-}} 400 =\: {\cancel{-}} 12s

\longrightarrow \sf 400 =\: 12s

\longrightarrow \sf \dfrac{400}{12} =\: s

\longrightarrow \sf 33.33 =\: s

\longrightarrow \sf\bold{\red{s =\: 33.33\: m}}

{\small{\bold{\underline{\therefore\: The\: distance\: travelled\: by\: the\: car\: is\: 33.33\: m\: .}}}}\\

Now, we have to find the time taken :

Given :

  • Final Velocity = 0 m/s
  • Initial Velocity = 20 m/s
  • Acceleration = - 6 m/

According to the question by using the formula we get,

\longrightarrow \sf 0 =\: 20 + (- 6) \times t

\longrightarrow \sf 0 - 20 =\: - 6 \times t

\longrightarrow \sf {\cancel{-}} 20 =\: {\cancel{-}} 6 \times t

\longrightarrow \sf 20 =\: 6t

\longrightarrow \sf \dfrac{20}{6} =\: t

\longrightarrow \sf 3.33 =\: t

\longrightarrow \sf\bold{\red{t =\: 3.33\: seconds}}

{\small{\bold{\underline{\therefore\: The \: total\: time\: taken\: in\: which\: the\: car\: comes\: to\: rest\: is\: 3.33\: seconds\: .}}}}\\

Similar questions