Physics, asked by Samarth190, 1 month ago

a motorboat starting from rest on a lake accelerate in straight line at the constant rate of 3.0 M/s2 for 6 sec how far does the boat travel during this time class 9

Answers

Answered by Yuseong
6

Answer:

54 m

Explanation:

As per the provided information in the given question, we have :

  • Initial velocity (u) = 0 m/s [As it starts from rest]
  • Acceleration (a) = 3 m/s²
  • Time taken (t) = 6 s

We've been asked to calculate the distance travelled by the boat.

Here, we have u, a and t. So, we can apply here the 2nd equation of motion. That is,

  \dashrightarrow \quad \boxed{\rm {s =ut + \dfrac{1}{2}at^2}} \\

  • s denotes distance
  • u denotes initial velocity
  • t denotes time
  • a denotes acceleration

Now, substitute the values ;

  \dashrightarrow \quad \rm { s= 0(6) + \dfrac{1}{2}(3)(6)^2 \; m} \\

  \dashrightarrow \quad \rm { s= 0(6) + \dfrac{1}{2}(3)(36) \; m} \\

  \dashrightarrow \quad \rm { s= (3)(18) \; m} \\

  \dashrightarrow \quad\underline{\boxed {\bf {s =54 \; m}}} \\

∴ The boat travels 54 m during this time.

\rule{200}2

⠀⠀⠀⠀⠀⠀⠀⠀ \Large {\underline { \sf {Learn \ More !}}}

Equations of motion :

\boxed{ \begin{array}{cc}    \pmb{\sf{ \quad \: v = u + at \quad}}  \\  \\  \pmb{\sf{ \quad \:  s= ut +  \cfrac{1}{2}a{t}^{2}  \quad \: } } \\ \\  \pmb{\sf{ \quad \:  {v}^{2} -  {u}^{2}  = 2as \quad \:}}\end{array}}

  • v denotes final velocity
  • u denotes initial velocity
  • a denotes acceleration
  • t denotes time
  • s denotes distance
Answered by SparklingThunder
2

 \huge\purple{ \underline{ \boxed{\mathbb\colorbox{cyan}{\red{QUESTION : }}}}}

A motorboat starting from rest on a lake accelerate in straight line at the constant rate of 3.0 \sf ms^{-2} for 6 seconds .How far does the boat travel during this time .

 \huge\purple{ \underline{ \boxed{\mathbb\colorbox{cyan}{\red{ANSWER : }}}}}

\bf Given\begin{cases}\bf Initial\:Velocity\:(u)=0\\\\\bf Acceleration\:(a)=3\: ms^{-2} \\\\\bf Time\: Taken\:(t)=6\:s\end{cases}

\green{ \large \underline{ \mathbb{\underline{FORMULA \:  USED: }}}}

\boxed{\displaystyle\bf s=ut+\frac{1}{2}at^{2}  }

\bf where\begin{cases}\bf s\:\;denotes\: distance\\\\\bf u\:\;denotes\: initial\: velocity\: \\\\\bf a\:\;denotes\: acceleration\\\\\bf t\:\;denotes\: time\: taken\end{cases}

\longrightarrow\displaystyle \bf s=0(6)+\frac{1}{2} (3)(6)^{2} \:\:\:\\\\\longrightarrow\displaystyle \bf s=0+\frac{1}{2} \;\times\;3\;\times\;36\\\\\longrightarrow\displaystyle \bf s=\frac{108}{2}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \:\:\:\:\:\:\:\\\\\longrightarrow\displaystyle  \underline{\boxed{\bf\:s=54 \;m}}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:

Boat travels 54 m during this time .

\Large{\mathbb{LEARN\;MORE :}}

Equations of motion :

\bf v\:=\:u\:+\:at\:\:\:\:\:\:\:\:\\\\\bf v^{2} \bf-u^{2} \:=\:2as\:\:\:\:\:\\\\\displaystyle\bf s\:=\:ut \:+\:\frac{1}{2} at^{2}

Similar questions