A motorboat whose speed is 18 km/hr in still water. It takes 3 hours more in covering a distance of 72 km upstream than downstream. Find speed of stream
Answers
Answered by
4
your answer
_________________
Let the speed of the stream be x km/hr.
Speed of the boat upstream = Speed of boat in still water – Speed of the stream
∴ Speed of the boat upstream = ( 18 – x ) km/hr
Speed of the boat downstream = Speed of boat in still water + Speed of the stream
∴ Speed of the boat downstream = ( 18 + x ) km/hr
Time of upstream journey = Time for downstream journey + 3 hr.
•°•
=
=> =+3hr
=> 72/18-x = 72/18+x + 3hr
_________________
Let the speed of the stream be x km/hr.
Speed of the boat upstream = Speed of boat in still water – Speed of the stream
∴ Speed of the boat upstream = ( 18 – x ) km/hr
Speed of the boat downstream = Speed of boat in still water + Speed of the stream
∴ Speed of the boat downstream = ( 18 + x ) km/hr
Time of upstream journey = Time for downstream journey + 3 hr.
•°•
=
=> =+3hr
=> 72/18-x = 72/18+x + 3hr
Answered by
0
Let the speed of the stream be x km\hr.
The speed of the boat upstream = (18 - x) km/hr
The speed of the boat downstream = (18 + x) km/hr
Distance = 24 km
As given in the question,
Time for upstream = 1 + Time for downstream
24/(18 - x) = 1 + 24/(18 + x)
24/(18 - x) - 24/(18 + x) = 1
x2 + 48x - 324 = 0
(x + 54)(x - 6) = 0
x ≠ - 54 as speed cannot be negative.
x = 6
The speed of the stream = 6 km/hr
Please make my answer brainliest please ple. ase.
Similar questions