a motorboat whose speed is 18km/h in still water takes one hour more to go 24km upstream than to return downstream to the same spot.find the speed of the stream
Answers
Answered by
2
Answer:
Let the speed of stream be x km / hr
For upstream = ( 18 - x ) km / hr
For downstream = ( 18 + x ) km / hr
A.T.Q.
24 / 18 - x - 24 / 18 + x = 1
48 x = 324 - x²
x² + 48 x - 324 = 0
( x + 54 ) ( x - 6 ) = 0
x = - 54 or x = 6
Since speed can't be negative .
Therefore , speed of the stream is 6 km / hr .
Answered by
1
Answer:
Let the speed of the stream be x km\hr.
The speed of the boat upstream = (18 - x) km/hr
The speed of the boat downstream = (18 + x) km/hr
Distance = 24 km
As given in the question,
Time for upstream = 1 + Time for downstream
24/(18 - x) = 1 + 24/(18 + x)
24/(18 - x) - 24/(18 + x) = 1
x2 + 48x - 324 = 0
(x + 54)(x - 6) = 0
x ≠ - 54 as speed cannot be negative.
x = 6
The speed of the stream = 6 km/hr
Similar questions