Math, asked by kamat98abhishek, 1 year ago

a motorboat whose speed is 20 km per hour in still water takes 1 hour more to go 48 km upstream then to return downstream to the same spot find the speed of the stream

Answers

Answered by nikky28
6
Heya mate,

here is your answer,

______________

Let the speed of stream = x km/h

Speed of boat in still water = 20 km/h

Speed in downstream = (20+x) km/h

Speed in upstream = (20−x) km/h

Time taken by boat to  cover 48 km downstream = 48/20+x hrs

Time taken by boat to cover 48 km upstream = 48/20−x hrs

Now, according to question,

48/20−x − 48/20+x = 1

 \frac{1}{20 - x}  -  \frac{1}{20 + x}  =  \frac{1}{48}  \\  \\  \frac{(20 + x) - (20 - x)}{(20 - x)(20 + x)}  =  \frac{1}{48}  \\  \\  \frac{2x}{400 -  {x}^{2} }  =  \frac{1}{48}

400 -  {x}^{2}  = 96x \\  \\  {x}^{2}  + 96x  - 400 = 0
 {x}^{2}  + 100x - 4x - 400 = 0
x (x+100) - 4 (x+100) =0

(x+100) (x-4) = 0

x+100 = 0 or x-4 = 0

x = 4 or x = -100 (rejected)


So, speed of stream = 4 km/ h

________________

# nikzz

HOPE U LIKE IT !!

CHEERS
☺☺



Answered by suniltk123balaji
1

Answer:

Step-by-step explanation:

Attachments:
Similar questions