Physics, asked by hiyathakkar1, 10 months ago

A motorcar is moving along a straight line with a uniform velocity of 90 km/h. Its velocity is slowed down to 18 km/h in 4 s by an unbalanced external force. Calculate the acceleration.

Answers

Answered by BrainlyConqueror0901
33

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Acceleration=-5\:m/s^{2}}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt:  \implies Initial \: speed(u) = 90 \: km/h \\  \\ \tt:   \implies Time(t) = 4 \: sec \\  \\ \tt:  \implies Final \: speed(v) = 18 \: km/h \\  \\  \red{\underline \bold{To \: Find:}} \\  \tt:  \implies Acceleration(a) = ?

• According to given question :

 \tt \circ \: Final \: speed = 18 \times  \frac{5}{18}  = 5 \: m/s \\  \\  \tt \circ \: Initial \: speed = 90 \times  \frac{5}{18} = 25 \: m/s  \\  \\  \bold{As \: we \: know \: that} \\  \tt:  \implies v = u + at \\  \\ \tt:  \implies 5 = 25 + a \times 4 \\  \\ \tt:  \implies 5 - 25 = a \times 4 \\  \\ \tt:  \implies  - 20 = a \times 4 \\  \\ \tt:  \implies a =  \frac{ - 20}{4}  \\  \\  \green{\tt:  \implies a =  - 5 \: m/{s}^{2} } \\  \\   \green{\tt \therefore Acceleration \: of \: motorcar \: is \:  - 5 \:  {m/s}^{2} } \\  \\  \blue{ \bold{Some \: related \: formula}} \\  \orange{ \tt \circ \:  {v}^{2}  =  {u}^{2}  + 2as} \\  \\ \orange{ \tt \circ \:  s  =  ut+  \frac{1}{2}a {t}^{2}  }

Answered by Anonymous
62

Answer:

:\implies\sf Initial\:Speed\:(u)=90\:km/h\\\\:\implies\sf Initial\:Speed\:(u)=90\times \dfrac{5}{18}\:m/s \\\\:\implies\sf Initial\:Speed\:(u) = 5\times 5 \:m/s\\\\:\implies\sf Initial\:Speed\:(u)= 25 \:m/s \\\\\\\\:\implies \sf Final\:Speed\:(v)=18\:km/h \\\\:\implies \sf Final\:Speed\:(v) =18 \times \dfrac{5}{18}\:m/s \\\\:\implies \sf Final\:Speed\:(v)=5 \:m/s\\\\\\\bullet\sf\:\:Time\:(t)=4\:sec

\rule{130}{1}

\underline{\bigstar\:\textbf{Using First Equation of Motion :}}

\dashrightarrow\sf\:\:v=u+at\\\\\\\dashrightarrow\sf\:\:5\:m/s=25\:m/s +( a \times 4s)\\\\\\\dashrightarrow\sf\:\:5\:m/s - 25\:m/s =(a \times 4s)\\\\\\\dashrightarrow\sf\:\:- \:20\:m/s =(a \times 4s)\\\\\\\dashrightarrow\sf\:\: \dfrac{ - \:20\:m/s}{4s} = a\\\\\\\dashrightarrow\:\:\underline{\boxed{\sf a = -\:5\:m\:s^{-2}}}

\therefore\:\underline{\textsf{Acceleration of motorcar is \textbf{- 5 m s$^{\text{-2}}$}}}.

Similar questions