A motorcyclist moving with uniform retardation takes 10s and 20s to travel successive quater kilometre. How much further he will travel before coming to rest? (Ans: 10.42m)
Answers
Please refer to the answer given below :
Let 'u' be the initial velocity of the motorcycle when it covers first 250 m in 10 s and let 'a' be the retarding acceleration of the vehicle .
Let v be the final velocity after 10 s.
Since we know that, v= u +at [ Kinematical equation ]
Substituting the value of t as 10 s, we get,
v = u +10a .................. [ eq. 1 ]
Also, we know that, s = ut + × a × t²
⇒ 250 = 10u + × a × (10)²
⇒ 250 = 10u + 50a
⇒ 25 = u + 5a .......................[ eq. 2 ]
After 20 s , let u' be the initial velocity after 20 s which will be equal to u + 10a.
∴ Again using the equation s = u't + × a × t²
and substituting s = 250 , u' = u + 10a , & t = 20 s, we get,
⇒ 250 = (u + 10a) × 20 + × a × ( 20 )²
⇒ 250 = 20u + 200a + 200a
⇒ 250 = 20u + 400a
⇒ 25 = 2u + 40a ................[ eq. 3 ]
Multiplying '2' in equation 2 and subtracting eq. 2 from eq. 3, we get ,
⇒ 25 = 2u + 40a
50 = 2u + 10a
- - -
_______________
-25 = 0 + 30a
⇒ a = -25/30
⇒ a = - 5/6 m/s²
Substituting a in eq. 2, we get,
⇒ 25 = u + (-5/6)×5
⇒ 25 + 25/6 = u
⇒ 175/6 m/s = u
Let v' be the final velocity after 20 s.
∴ v' = u' + at
Substituting u' = u + 10a and t = 20 s, we get,
⇒ v' = u + 10a + 20a
⇒ v' = u + 30a
Let ' s' ' be the distance travelled after 20 s beofre coming to rest.
∵ It finally comes to rest, therefore its final velocity is 0 .
Also, we know that, v² = u² + 2as.
Substituting v = 0 m/s , u = u + 30a , we get,
⇒ 0 = ( u + 30a )² + 2as'
Again substituting u = 175/6 m/s and a = -5/6 m/s² in the above equation, we get,
⇒ 0 = ( 175/6 - 30×5/6 )² - 2 × 5/6 × s'
⇒ 0 = ( 175/6 - 25 )² - 5/3 × s'
⇒ 0 = ( 25/6) - 5/3 × s'
On solving further, s' = 125/12 i.e., 10.42 m
This is your answer.
Hope this HELPS !!!
Let 'u' be the initial velocity of the motorcycle when it covers first 250 m in 10 s and let 'a' be the retarding acceleration of the vehicle .
Let v be the final velocity after 10 s.
Since we know that, v= u +at
Substituting the value of t as 10 s, we get,
v = u +10a .................. [ eq. 1 ]
Also, we know that, s = ut + 1/2 × a × t²
⇒ 250 = 10u + 1/2 × a × (10)²
⇒ 250 = 10u + 50a
⇒ 25 = u + 5a .......................[ eq. 2 ]
After 20 s , let u' be the initial velocity after 20 s which will be equal to u + 10a.
∴ Again using the equation s = u't + 1/2× a × t²
and substituting s = 250 , u' = u + 10a , & t = 20 s, we get,
⇒ 250 = (u + 10a) × 20 + 1/2 × a × ( 20 )²
⇒ 250 = 20u + 200a + 200a
⇒ 250 = 20u + 400a
⇒ 25 = 2u + 40a ................[ eq. 3 ]
Multiplying '2' in equation 2 and subtracting eq. 2 from eq. 3, we get ,
⇒ 25 = 2u + 40a
50 = 2u + 10a
- - -
______________
-25 = 0 + 30a
⇒ a = -25/30
⇒ a = - 5/6 m/s²
Substituting a in eq. 2, we get,
⇒ 25 = u + (-5/6)×5
⇒ 25 + 25/6 = u
⇒ 175/6 m/s = u
Let v' be the final velocity after 20 s.
∴ v' = u' + at
Substituting u' = u + 10a and t = 20 s, we get,
⇒ v' = u + 10a + 20a
⇒ v' = u + 30a
Let ' s' ' be the distance travelled after 20 s beofre coming to rest.
∵ It finally comes to rest, therefore its final velocity is 0 .
Also, we know that, v² = u² + 2as.
Substituting v = 0 m/s , u = u + 30a , we get,
⇒ 0 = ( u + 30a )² + 2as'
Again substituting u = 175/6 m/s and a = -5/6 m/s² in the above equation, we get,
⇒ 0 = ( 175/6 - 30×5/6 )² - 2 × 5/6 × s'
⇒ 0 = ( 175/6 - 25 )² - 5/3 × s'
⇒ 0 = ( 25/6) - 5/3 × s'
On solving further, s' = 125/12 i.e., 10.42 m
This is your answer.
Hope this HELPS !!!