Math, asked by Anonymous, 1 month ago


a moving car along a straight line highway with speed of 126/hrs brought to a stop within a distance of 200 m. What is the retardation of the car (assumed uniform), and how long does it take for the car to stop ?​

Answers

Answered by xxblackqueenxx37
59

 \: \: \huge\mathbb\colorbox{black}{\color{white}{AnSwEr}}

 \sf \pink{Given}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

\sf \green{Velocity  \: of \:  car \:  v = 126 km/h = 35 m/s}

 \sf \green{Displacements \:  200 \:  m}  \:  \:  \:  \: \\ \sf \pink{Final  \: velocity \:  v = 0 m/s}

 \sf {Apply \:  second \:  kinematic \:  equation \:  to} \\  \sf calculate \:  retardation \:  a   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:   \\  \sf \: \:(v²-u² = 2as) \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \sf \: a  = \frac{ {v}^{2}  -  {u}^{2} }{2s}  =  \frac{0 -  {35}^{2} }{2 \times 200}  =  - 3.0625  \: {m/s}^{2}  \\

 \sf \green{Apply \:  first \:  kinematic \:}   \\ \sf \green {equation \:  to \:  calculate \: timet}

 \sf \: v = u + at

 \sf \:  =  >  \: t =  \frac{v - u}{a} =  \frac{0 - 35}{3.0625}  = 11.43sec \\

 \sf \: Hence, retardation \:  is \:  3.06 m/s² \:  and \:  time  \\  \sf \: take \: to  \: stop  \: is \:  11.4 sec \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \sf \green \: ans =  >  \: 11.4sec

hope it was helpful to you

Similar questions