Math, asked by Sarahkhurana, 1 year ago

a narrow box is 6√2 cm long and 4√2 cm wide . find the height if the length of the diagonal is 4√7 cm .( CUBOID)​

Answers

Answered by jitendra420156
7

Therefore the height of the cuboid is 2\sqrt{2}cm.

Step-by-step explanation:

Given, A narrow box is 6\sqrt{2} cm long and 4\sqrt{2}cm wide.

Let the height of cuboid is h.

Here l =  length of the cuboid = 6\sqrt{2} cm

b = wide of the cuboid =4\sqrt{2} cm

Then the diagonal of the cuboid is  \sqrt{l^2+b^2+h^2}

                                                           =\sqrt{(6\sqrt{2})^2+(4\sqrt{2})^2+h^2 } cm

                                                          =\sqrt{72+32+h^2 } cm

But given that the diagonal of the cuboid is  4\sqrt{7} cm.

Therefore,

\sqrt{72+32+h^2 }=4\sqrt{7}

\Rightarrow{72+32+h^2 }=(4\sqrt{7})^2                        [ squaring both sides]

\Rightarrow104+h^2 }=112

\Rightarrow h^2 }=8

\Rightarrow h =2\sqrt{2}

Therefore the height of the cuboid is 2\sqrt{2}cm.

                                                         

Answered by llTheUnkownStarll
5

Given:

  • Length of box, l =62cm
  • Breadth of box, b=42cm
  • Length of diagonal of box, d=47cm

To find:

  •  Height of box?

Required Formula:

\begin{gathered} {\color{purple}\bigstar}\;{\boxed{\frak{{Diagonal_{\;(cuboid)} = \sqrt{(length)^2 + (breadth)^2 + (height)^2}}}}}\\\\\end{gathered} \\ \begin{gathered}:\implies\sf d = \sqrt{l^2 + b^2 + h^2}\\\\\end{gathered}

Here,

  • l = 6√2 cm
  • b = 4√2 cm
  • d = 4√7 cm

⠀⠀⠀

Solution:

\begin{gathered}\star\;{\underline{\frak{ \color{navy}{Now,\:Putting\:values\;in\;formula,}}}}\\\\\end{gathered}

\begin{gathered}:\implies\sf 4\sqrt{7} = \sqrt{(6\sqrt{2})^2 + (4\sqrt{2})^2 + h^2}\\ \\ \\ :\implies\sf 4\sqrt{7} = \sqrt{72 + 32 + h^2}\\ \\ \\\qquad:\implies\sf (4\sqrt{7})^2 = \bigg(\sqrt{72 + 32 + h^2}\bigg)^2 \qquad \qquad {{\sf\  \Big\{Squaring\:both\:sides\Big\}}}\\\  \\ \\:\implies\sf (4\sqrt{7})^2 = 72 + 32 + h^2\\ \\ \\ :\implies\sf 112 = 104 + h^2\\ \\ \\ :\implies\sf h^2 = 112 - 104\\ \\ \\ :\implies\sf h^2 = 8\\ \\ \\ :\implies\sf \sqrt{h^2} = \sqrt{8}\\ \\ \\ :\implies\sf h = \sqrt{8}\\ \\ \\:\implies{\underline{\boxed{\frak{{h = 2 \sqrt{2}\:cm}}}}}\pink\bigstar\\  \\ \\ \therefore{ \underline{ \sf{Hence, the \:  height \:  of \:  box  \: is  \:  \textsf{ \textbf{h =2√2 cm}.}}}}\end{gathered}

тнαηк үσυ

||TheUnknownStar||

Similar questions