Math, asked by skumaaranmol7933, 9 months ago

A no. consists of 2 digit no. whose sum is 9. if 27 is added to no. the digits are reversed then th eno. is

Answers

Answered by pandaXop
29

Number = 36

Step-by-step explanation:

Given:

  • Sum of digits of a two digit number is 9.
  • After adding 27 to the number it's digits get reversed.

To Find:

  • What is the number ?

Solution: Let the tens digit be x and units digit be y. Therefore,

➨ Number is 10x + y

➨ x + y = 9

➨ x = 9 – y

A/q

  • Now after adding 27 digits gets reversed

\implies{\rm } 10x + y + 27 = 10y + x

\implies{\rm } 10x x + 27 = 10y y

\implies{\rm } 9x + 27 = 9y

\implies{\rm } 9x 9y = 27

\implies{\rm } 9(x y) = 27

\implies{\rm } x y = 27/9

\implies{\rm } x y = 3

\implies{\rm } 9 y y = 3

\implies{\rm } 9 + 3 = 2y

\implies{\rm } 12 = 2y

\implies{\rm } 6 = y

So,

➽ Unit digit of number is y = 6

➽ Tens digit of number is x = 9 – 6 = 3

Hence, the number is 10x + y = 10(3) + 6

➽ 36


amitkumar44481: Great :-)
Answered by Anonymous
52

QUESTION:-

✯ᴀ ɴᴏ. ᴄᴏɴsɪsᴛs ᴏғ 2 ᴅɪɢɪᴛ ɴᴏ. ᴡʜᴏsᴇ sᴜᴍ ɪs 9. ɪғ 27 ɪs ᴀᴅᴅᴇᴅ ᴛᴏ ɴᴏ. ᴛʜᴇ ᴅɪɢɪᴛs ᴀʀᴇ ʀᴇᴠᴇʀsᴇᴅ ᴛʜᴇɴ ᴛʜᴇ ɴUMBER. ɪs

ANSWER✔

\Large\underline\bold{GIVEN,}

 \sf\dashrightarrow  the\:sum\:of\:two\:digit\:number\:is\:9

 \sf\dashrightarrow  the\:digits\:get\:reverse\:when\:adding\:27\:to\:it

\Large\underline\bold{TO\:FIND,}

 \sf\dashrightarrow  THE\:NUMBER.

 \sf\therefore \:taking\:two\:cases,

 \sf\therefore in\:case1\:we\:will\:find\:the\:equation,

 \sf\therefore getting\:reversed\:and\:finding \:the\:number

\Large\underline\bold{SOLUTION,}

 \sf\therefore let\:the\:ten\:digit\:be\:x

 \sf\therefore let\:the\:unit\:digit\:be\:y

ACCORDING TO THE QUESTION,

\large{\fbox {CASE:-1}}

 \sf\therefore the\:equation\:we\:get\:is,

 \sf\therefore 10x+y

 \sf\therefore  the\:sum\:of\:two\:digit\:number\:is\:9

 \sf\therefore  x+y=9

 \sf\therefore x=9-y....…....eq^1

\sf{\boxed{\sf{x=9-y...........eq^1}}}

\large {\fbox {CASE:-2}}

 \sf\therefore  the\:digits\:get\:reverse\:when\:adding\:27\:to\:it

ACCORDING TO GIVEN,

AFTER ADDING ,

27 DIGITS GETS REVERSED,

THEREFORE,

 \sf\implies 10x + y + 27 = 10y + x

 \sf\implies 10x - x + 27 = 10y - y

 \sf\implies 9x + 27 = 9y

 \sf\implies 9x -9y = - 27

 \sf\implies 9(x - y) = - 27

 \sf\implies x - y = \dfrac{-27}{9}

 \sf\implies x - y = \cancel \dfrac{-27}{9}

 \sf\implies x -y = - 3

 \sf\implies 9 - y - y = - 3

 \sf\implies 9-2y=-3

 \sf\implies -2y=(-3)+(-9)

 \sf\implies 2y=12

 \sf\implies y = \dfrac{12}{2}

 \sf\implies y=6

\sf {\fbox { y=6}}

 \sf\therefore unit\:digit=6

 \sf\therefore substituting\:the\:value\:of\:y\:in\:eq^1

 \sf\therefore x=9-y

 \sf\therefore x=9-6

 \sf\implies x=3

\sf{\boxed{\sf{x=6}}}

 \sf\therefore 10x+y

 \sf\therefore equating\:values\:of\:x\:and\:y.\:we\:get,

 \sf\therefore 10(3)+6

\large{\boxed{\sf{the\:number\:is\:36}}}

________________________

Similar questions