Computer Science, asked by laxmansatish5433, 7 months ago

A non-empty array A consisting of N numeric values is given.
The product of quadruplet (P, Q, R, S) equates to A[P] * A[Q] * A[R]
* A[S]
(0 P<Q R S < N).
For example, array A such that:
A[0] = -3
A[6] = 1
A[1] = 1
A[2] = 2
A[3] = -2
A[4] = 5
A[5] = 6
(0, 1, 2, 3), product is -3*1*2*-2 = 12
• (1, 2, 4,5), product is 1*2*5*6 = 30
(2,4,5,6), product is 2*5*6* 1 = 60
60 is the product of quadruplets (2, 4, 5, 1), which is maximal.
Your goal is to find the maximal product of any quadruplet for
input Array A[]
Write an efficient algorithm for the following assumntions:​

Answers

Answered by shraboniroy120
4

Answer:

#include <stdio.h>

   void main ()

   {

       int number[30];

       int i, j, a, n;

       printf("Enter the value of N\n");

       scanf("%d", &n);

       printf("Enter the numbers \n");

       for (i = 0; i < n; ++i)

        scanf("%d", &number[i]);

       /*  sorting begins ... */

       for (i = 0; i < n; ++i)

       {

           for (j = i + 1; j < n; ++j)

           {

               if (number[i] < number[j])

               {

                   a = number[i];

                   number[i] = number[j];

                   number[j] = a;

               }

           }

       }

       if(n<3){

           printf("Wrong");

       }else

       {

           printf("The numbers arranged in descending order are given below\n");

       int sum=1;

       for (i = 0; i < n; ++i)

       {

           sum=number[i]*sum;

       }

       printf("%d",sum);

       }

   }

Explanation:

Similar questions