Math, asked by Anonymous, 10 months ago

A number consist of two digits whose product is 8. If the digits are interchanged the resulting number will exceed the original one by 18. Find the number

Answers

Answered by Anonymous
15

Answer: 24

Step-by-step explanation:

number = 10x + y

10y +x = 10x+y +18

⇒ 9y -9x = 18  ⇒ y - x = 2 ⇒ y = x+2

xy= 8 ⇒ x(x+2) = 8 ⇒ x^2 + 2x - 8 = 0 ⇒ (x+4)(x-2) =0

x-2 = 0 or x +4 =0

x = 2 or x = -4, x can not be negative so

x = 2 then y = x+2 = 4

number = 24

Answered by Anonymous
31

Solution :

\bf{\green{\underline{\bf{Given\::}}}}

A number consist of two digit whose product is 8. If the digits are interchanged the resulting number will exceed the original one by 18.

\bf{\green{\underline{\bf{To\:find\::}}}}

The number.

\bf{\green{\underline{\bf{Explanation\::}}}}

Let the number be;

\boxed{\bf{10r+m}}}}

Let the ten's place be r

Let the one's place be m

\dag\underline{\bf{The\:reversed\:number=10m+r}}}}

A/q

\implies\sf{rm=8.....................(1)}

&

\implies\sf{10r+m+18=10m+r}\\\\\\\implies\sf{10r-r+m-10m=-18}\\\\\\\implies\sf{9r-9m=-18}\\\\\\\implies\sf{9(r-m)=-18}\\\\\\\implies\sf{r-m=\cancel{\dfrac{-18}{9} }}\\\\\\\implies\sf{r-m=-2}\\\\\\\implies\sf{r=-2+m....................(2)}

Putting the value of r in equation (1),we get;

\implies\sf{-2+m(m)=8}\\\\\implies\sf{-2m+m^{2} =8}\\\\\implies\sf{m^{2} -2m-8=0}\\\\\implies\sf{m^{2} -4m+2m-9=0\:\:\:\:[factorise]}\\\\\implies\sf{m(m-4)+2(m-4)=0}\\\\\implies\sf{(m-4)(m+2)=0}\\\\\implies\sf{m-4=0\:\:\:Or\:\:\:m+2=0}\\\\\implies\sf{\pink{m=4\:\:\:Or\:\:\:m\neq -2}}

Putting the value of m in equation (2),we get;

\implies\sf{r=-2+4}\\\\\implies\sf{\pink{r=2}}

Thus;

\underbrace{\sf{The\:original\:number=(10r+m)=10(2)+4=20+4=\boxed{24}}}}

Similar questions