Math, asked by mahalakshminarayanan, 5 months ago

A number consists of 2 digits. The sum of its digits is 11. The number obtained by interchanging the digits is 27 
more than the given number. Find the number.​

Answers

Answered by rejithomas529
0

Answer:

47

Step-by-step explanation:

4+7=11

74-47= 27

answer is 47

Answered by Anonymous
10

Answer:

ₗₑₜ’ₛ ᵣₑₚᵣₑₛₑₙₜ ₜₕₑ ₜₑₙₛ dᵢgᵢₜ wᵢₜₕ ‘ₐ,” ₐₙd ₜₕₑ ₒₙₑₛ dᵢgᵢₜ wᵢₜₕ ‘ᵦ․’

ₜₕₑ ᵥₐₗᵤₑ ₒf ₜₕᵢₛ ₙᵤₘᵦₑᵣ ᵢₛ ₁₀ₐ ₊ ᵦ; ₜₕᵢₛ ₙᵤₘᵦₑᵣ ᵢₛ ₂₇ ₘₒᵣₑ ₜₕₐₙ ₜₕₑ ₙᵤₘᵦₑᵣ fₒᵣₘₑd ᵦy ₜₕₑ ₛₐₘₑ dᵢgᵢₜₛ ᵢₙ ₜₕₑ ₒₜₕₑᵣ ₒᵣdₑᵣ, ₛₒ ₁₀ₐ ₊ ᵦ ₌ ₁₀ᵦ ₊ ₐ ₊ ₂₇․

ₜₕₑ dᵢgᵢₜ ₛᵤₘ ᵢₛ ₁₁; ₐ ₊ ᵦ₌₁₁, ₒᵣ ᵦ ₌ ₁₁ ₋ ₐ․

₁₀ₐ ₊ ᵦ ₌ ₁₀ᵦ ₊ ₐ ₊ ₂₇

₁₀ₐ ₊ ₍₁₁ ₋ ₐ₎ ₌ ₁₀₍₁₁ ₋ ₐ₎ ₊ ₐ ₊ ₂₇

₁₀ₐ ₊ ₁₁ ₋ ₐ ₌ ₁₁₀ ₋ ₁₀ₐ ₊ ₐ ₊ ₂₇

₉ₐ ₊ ₁₁ ₌ ₁₁₀ ₋ ₉ₐ ₊ ₂₇

₉ₐ ₊ ₁₁ ₌ ₁₃₇ ₋ ₉ₐ

₁₈ₐ ₊ ₁₁ ₌ ₁₃₇

₁₈ₐ ₌ ₁₂₆

ₐ ₌ ₁₂₆/₁₈

ₐ ₌ ₇

ᵦ ₌ ₁₁ ₋ ₇ ₌ ₄

ₛₒ ₜₕₑ ₒᵣᵢgᵢₙₐₗ ₙᵤₘᵦₑᵣ ᵢₛ ₇₄․

ₜₕₑ ₛᵤₘ ₒf ₜₕₑ dᵢgᵢₜₛ ᵢₛ ₇₊₄₌₁₁․

ₐₙd ᵢf yₒᵤ ᵣₑᵥₑᵣₛₑ ₜₕₑ dᵢgᵢₜₛ yₒᵤ gₑₜ ₄₇; ₄₇ ₊ ₂₇ ₌ ₇₄․

\huge\red{your ❦ ans}

Similar questions