A number consists of 2 digits. The sum of its digits is 11. The number obtained by interchanging the digits is 27
more than the given number. Find the number.
Answers
Answered by
0
Answer:
47
Step-by-step explanation:
4+7=11
74-47= 27
answer is 47
Answered by
10
Answer:
ₗₑₜ’ₛ ᵣₑₚᵣₑₛₑₙₜ ₜₕₑ ₜₑₙₛ dᵢgᵢₜ wᵢₜₕ ‘ₐ,” ₐₙd ₜₕₑ ₒₙₑₛ dᵢgᵢₜ wᵢₜₕ ‘ᵦ․’
ₜₕₑ ᵥₐₗᵤₑ ₒf ₜₕᵢₛ ₙᵤₘᵦₑᵣ ᵢₛ ₁₀ₐ ₊ ᵦ; ₜₕᵢₛ ₙᵤₘᵦₑᵣ ᵢₛ ₂₇ ₘₒᵣₑ ₜₕₐₙ ₜₕₑ ₙᵤₘᵦₑᵣ fₒᵣₘₑd ᵦy ₜₕₑ ₛₐₘₑ dᵢgᵢₜₛ ᵢₙ ₜₕₑ ₒₜₕₑᵣ ₒᵣdₑᵣ, ₛₒ ₁₀ₐ ₊ ᵦ ₌ ₁₀ᵦ ₊ ₐ ₊ ₂₇․
ₜₕₑ dᵢgᵢₜ ₛᵤₘ ᵢₛ ₁₁; ₐ ₊ ᵦ₌₁₁, ₒᵣ ᵦ ₌ ₁₁ ₋ ₐ․
₁₀ₐ ₊ ᵦ ₌ ₁₀ᵦ ₊ ₐ ₊ ₂₇
₁₀ₐ ₊ ₍₁₁ ₋ ₐ₎ ₌ ₁₀₍₁₁ ₋ ₐ₎ ₊ ₐ ₊ ₂₇
₁₀ₐ ₊ ₁₁ ₋ ₐ ₌ ₁₁₀ ₋ ₁₀ₐ ₊ ₐ ₊ ₂₇
₉ₐ ₊ ₁₁ ₌ ₁₁₀ ₋ ₉ₐ ₊ ₂₇
₉ₐ ₊ ₁₁ ₌ ₁₃₇ ₋ ₉ₐ
₁₈ₐ ₊ ₁₁ ₌ ₁₃₇
₁₈ₐ ₌ ₁₂₆
ₐ ₌ ₁₂₆/₁₈
ₐ ₌ ₇
ᵦ ₌ ₁₁ ₋ ₇ ₌ ₄
ₛₒ ₜₕₑ ₒᵣᵢgᵢₙₐₗ ₙᵤₘᵦₑᵣ ᵢₛ ₇₄․
ₜₕₑ ₛᵤₘ ₒf ₜₕₑ dᵢgᵢₜₛ ᵢₛ ₇₊₄₌₁₁․
ₐₙd ᵢf yₒᵤ ᵣₑᵥₑᵣₛₑ ₜₕₑ dᵢgᵢₜₛ yₒᵤ gₑₜ ₄₇; ₄₇ ₊ ₂₇ ₌ ₇₄․
Similar questions