Math, asked by plzanswermyquestion, 9 months ago

A number consists of two digit whose sum is 9. If 9 is subtracted from the number the digits interchange their places. Find the number.

a-36
b-54
c-45
d-63

Answers

Answered by mddilshad11ab
78

\huge{\underline{\purple{\rm{Solution:}}}}

\large{\underline{\red{\rm{Given:}}}}

  • A number consists of two digit whose sum is 9. If 9 is subtracted from the number the digits interchange their places

\large{\underline{\green{\rm{Let:}}}}

  • \sf{The\: ones\: digit=x}
  • \sf{The\: tens\: digit=y}
  • \sf{The\: Number=10y+x}

\small{\underline{\purple{\rm{As\:per\:the\: above\: information:}}}}

\sf{The\:sum\:of\:two\: digits=9}

\sf{\implies x+y=9}

\sf\green{\implies x+y=9-----(i)}

\sf{\implies If\:9\:is\: subtracted\: from\:the\: Number\:the\: digits\:are\: reversed\:in\: it's\: place}

\sf{\implies (10y+x)-9=10x+y}

\sf{\implies 10x-x+y-10y=-9}

\sf{\implies 9x-9y=-9}

\sf{\implies Dividing\:by\:9\:on\:both\: sides}

\sf\green{\implies x-y=-1-----(ii)}

\sf{\implies Solving\: equation\:1\:and\:2\: here,}

\sf{\implies x+y=9}

\sf{\implies x-y=-1}

\sf{\implies Adding\: equation\:here\:we\:get}

\sf{\implies \cancel{2}x=\cancel{8}}

\sf{\implies x=4}

\sf{\implies Now,\: putting\:the\: value\:of\:x=4\:in\:eq\:1}

\sf{\implies 4+y=9}

\sf{\implies y=9-4}

\sf{\implies y=5}

hence,

\sf\green{\implies The\: number=10y+x=10*5+4=54}

Answered by shalu8768
3

Answer:

x+y =9

10x+y -9 = 10y+x

9x-9=9y

x-y=1

2x=10

x=5

y =4

the number is 54

Similar questions