Math, asked by kalamia488, 2 months ago

A number consists of two digits. The sum of the digits is 15. If 27 is

subtracted from the number, its digits are interchanged. Find the number?​

Answers

Answered by xSoyaibImtiazAhmedx
3

Let the number be 10x + y

In the 1st condition :

  • Sum of the digits 15

 \color{red}{ \bold{ \underline{{x + y = 15}} \:  \:  -  -  -  - (1)}}

In the 2nd condition:

  • When 27 is subtracted from 10x + y , it becomes 10y + x .

{ \color{blue}{ \bold{10x + y  - 27 = 10y + x}}}

{ \color{blue}{ \bold{ \implies \: 9x - 9y = 27}}}

{ \color{red}{ \bold{ \implies \:  \underline{x - y = 3} \:  \:  \:  -  -  -  -  - (2)}}}

Now,

  \color{grey} \bold{ eq(1) - eq(2), }

 \color{violet} \bold{ \implies \: x + y - (x - y) = 15 - 3}

 \color{indigo} \bold{ \implies \: x + y - x  + y = 12}

\color{indigo} \bold{ \implies 2 y = 12}

\color{blue} \bold{ \implies{ \boxed{ \bold{ y = 6}}}}

Now, putting the value of y in eq(1) we get,

 \color{green}{ \bold{x + 6 = 15}}

 \implies \: \boxed{ \color{purple}{ \bold{ x = 9}}}

So, the number is

 \bold{10x + y }

 = 10 \times 9 + 6

 = 90 + 6

 =  \large \color{orange}{\bold{ 96}}

\Large{\colorbox{pink}{\underline{\underline{♠Answer♠:—\:\: 96}}}}

Similar questions