Math, asked by shubhneet44, 10 months ago

a number consists of two digits whise sum is 9.If 27 is subtracted fron tge original number,its digits are interchanged.Then the original number is....​

Answers

Answered by Sauron
21

Answer:

The Original Number is 63.

Step-by-step explanation:

Given :

Sum of the digits = 9

When 27 is subtracted from the original number = the digits get interchanged

To find :

The original number

Solution :

\textsf{\underline{\underline{Original Number :-}}}

Let the Digits be -

  • Units Place as y
  • Tens Place as 10(9 - y)

⇒ 10(9 - y) + y

⇒ 90 - 10y + y

90 - 9y ........ [Original Number]

\rule{300}{1.5}

\textsf{\underline{\underline{Number with Reversed Digits :- }}}

Let the Digits be -

  • Units Place as (9 - y)
  • Tens Place as 10(y)

⇒ 10(y) + (9 - y)

⇒ 10y + 9 - y

9y + 9 ...... [Number with Reversed Digits]

\rule{300}{1.5}

\textsf{\underline{\underline{According to the Question :- }}}

When 27 is subtracted from the original number, the digits get interchanged.

⇒ (90 - 9y) - 27 = 9y + 9

⇒ 63 - 9y = 9y + 9

⇒ 9y + 9y = 63 - 9

⇒ 18y = 54

⇒ y = \tt{\dfrac{54}{18}}

⇒ y = 3

\rule{300}{1.5}

Value of 90 - 9y (Original Number)

⇒ 90 - 9(3)

⇒ 90 - 27

⇒ 63

Original Number = 63

\therefore The Original Number is 63.

\rule{300}{1.5}

Verification :

As the original number is 63, the number with interchanged digits will be 36. Check whether the condition given in the question matches or not.

Condition - When 27 is subtracted from the original number, the digits get interchanged.

⇒ 63 - 27

⇒ 36

\therefore The Original Number is 63.


Anonymous: Awesome + Great Explanation :D
Answered by Anonymous
172

\bold{\underline{\underline{Answer:}}}

Original Number = 63

\bold{\underline{\underline{Step\:by\:step\:explanation:}}}

Given :

  • A number consists of two digits whose sum is 9.
  • If 27 is subtracted from the original number,its digits are interchanged.

To find :

  • The original number

Solution :

Let the digit in the tens place be x.

Let the digit in the units place be y.

Original Number = 10x + y

\bold{\underline{\underline{As\:per\:the\:first\:condition:}}}

  • Sum of the digits = 9

Constituting it mathematically,

\rightarrow\bold{x + y = 9} ---> (1)

\bold{\underline{\underline{As\:per\:the\:second\:condition:}}}

  • 27 is subtracted from the original number,its digits are interchanged.

Reversed Number = 10y + x

Constituting it mathematically,

\rightarrow\bold{10x+y-27=10y+x}

\rightarrow\bold{10x-x-27=10y-y}

\rightarrow\bold{9x-27=9y}

\rightarrow\bold{9x-9y= 27}

\rightarrow\bold{9(x-y)= 27}

\rightarrow\bold{x-y= {\dfrac{27}{9}}}

\rightarrow\bold{x-y=3} --> (2)

Solve equation 1 and equation 2 simultaneously by elimination method.

Add equation 1 to equation 2,

x + y = 9 ---> (1)

x - y = 3 ---> (2)

-------------

2x = 12

\rightarrow\bold{x={\dfrac{12}{2}}}

\rightarrow\bold{x=6}

Substitute x = 6 in equation 1,

\rightarrowx + y = 9 ---> (1)

\rightarrow6 + y = 9

\rightarrowy = 9 - 6

\rightarrowy = 3

\bold{\boxed{\red{\rm{Tens\:digit\:=\:x\:=\:6}}}}

\bold{\boxed{\red{\rm{Units\:digit\:=\:y\:=\:3}}}}

\bold{\boxed{\red{\rm{Original\:Number\:=\:10x+y\:=\:10\times\:6\:+\:3\:=\:60\:+\:3\:=\:63}}}}


Anonymous: Awesome keep it up :)
Similar questions