Math, asked by kalyaniasmya, 2 months ago

A number consists of two digits whose sum is 16. If 18 is added to the number then the digits change their places. What is the number?​

Answers

Answered by Flaunt
30

Given

We have given sum of two digits number is 16

if 18 is added to the number then the digits change their places.

To Find

we have to find the number

\sf\huge\bold{\underline{\underline{{Solution}}}}

let the one's place digit be x

then the ten's place digit be 16-x

So,number becomes => 10(16-x)+x

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: =>160-10x+x

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: =160-9x

Now,if the digits are reversed if 18 is added

then ,new number : 10x+16-x

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  => 9x+16

According to the question:

=>160-9x+18=9x+16

=>160+18-16=9x+9x

=>162=18x

=>x=162÷18

=>x=9

given number :160-9x

=>160-9(9)

=>160-81

=>79

hence,the number is 79

Answered by MrAnonymous412
24

Question :-

A number consists of two digits whose sum is 16. If 18 is added to the number then the digits change their places. What is the number?

Solution :-

Let one digit of the number be x , then it's tenth digits digits will be ( 16 - x ).

So, The given number is ,

 \\  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \sf   \implies10(16- x) + x \\

 \\  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \sf   \implies \: 160 - 10x+ x \\

 \\  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \sf   \implies \: 160 - 9x\\

Now, If digits are reversed, then the number form is :

 \\  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \sf   \implies10 x + (16 -  x) \\

 \\  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \sf   \implies10 x + 16-  x \\

 \\  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \sf   \implies9x + 16 \\

Now, According to the question ,

If 18 is added to the number then the digits change their places.

So,

  \\ \:  \:  \:  \sf \:  \longrightarrow \: (160 - 9x) + 18 = 9x + 16 \\

  \\ \:  \:  \:  \sf \:  \longrightarrow \: 160  + 18  - 9x= 9x + 16 \\

  \\ \:  \:  \:  \sf \:  \longrightarrow \: 178  - 9x= 9x + 16 \\

  \\ \:  \:  \:  \sf \:  \longrightarrow \:   9x+ 9x= 178 - 16 \\

  \\ \:  \:  \:  \sf \:  \longrightarrow \:   18x= 162\\

  \\ \:  \:  \:  \sf \:  \longrightarrow \:   x=  \dfrac{162}{18}\\

  \\ \:  \:  \:  \sf \:  \longrightarrow \:    \:  \:  \:  \:  \:  \: \underline  {\boxed{ { \color{blue}\frak{x=  9}}}}\\

Therefore, The Given number is

 \\  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \sf   \implies \: 160 - 9x\\

 \\  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \sf   \implies \: 160 - 9 \times 9\\

 \\  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \sf   \implies \: 160 - 81\\

  \\ \:  \:  \:  \sf \:  \implies \:    \:  \:  \:  \:  \:  \: \underline  {\boxed{ { \color{blue}\frak{the \: number \: =  79}}}}\\

Hope it's helpful

Similar questions