Math, asked by roseminha786, 10 months ago

A number consists of two digits whose sum is 9. If 27 is subtracted from the original number, it's digits are interchanged. Find the original number

Answers

Answered by rohitkumarabc68
4

Answer:

Step-by-step explanation:

Hope this help u

Attachments:
Answered by Anonymous
133

\bold{\underline{\underline{\huge{\sf{AnsWer:}}}}}

Original Number = 63

\bold{\underline{\underline{\huge{\sf{StEp\:by\:stEp\:explanation:}}}}}

GiVeN :

  • A number consists of two digits whose sum is 9.
  • If 27 is subtracted from the original number, it's digits are interchanged.

To FiNd :

  • The Original Number

SoLuTiOn :

Let the digit at the tens place be x.

Let the digit at the units place be y.

Original Number = 10x + y

\underline{\underline{\sf{As\:PeR\:tHe\:FiRsT\:cOnDiTiOn:}}}

  • Sum of digits = 9

Constituting it mathematically,

\implies\sf{x\:+\:y\:=9} ----> (1)

\underline{\underline{\sf{As\:PeR\:tHe\:SeCoNd\:cOnDiTiOn:}}}

  • When 27 is subtracted from the original number it's digit are interchanged.

Altered Number = 10y + x

Constituting it mathematically,

\implies\sf{10x\:+\:y\:-\:27\:=\:10y\:+\:x}

\implies\sf{10x\:-\:x\:-\:27\:=\:10y\:-\:y}

\implies\sf{9x\:-\:27\:=\:9y}

\implies\sf{9x\:-\:9y\:=\:27}

\implies\sf{9(x-y)\:=\:27}

\implies\sf{x\:-\:y\:=\:{\dfrac{27}{9}}}

\implies\sf{x\:-\:y\:=\:3} ----> (2)

Solve equation 1 and equation 2 simultaneously by elimination method.

Add equation 1 to equation 2,

x + y = 9

x - y = 3

--------------

\implies2x = 12

\implies\sf{x\:=\:{\dfrac{12}{2}}}

\implies\sf{x\:=\:6}

Substitute x = 6 in equation 1,

\implies\sf{x\:+\:y\:=\:9}

\implies\sf{6\:+\:y\:=\:9}

\implies\sf{y\:=\:9\:-\:6}

\implies\sf{y\:=\:3}

\bold{\large{\boxed{\red{\rm{Tens\:digit\:=\:x\:=\:6}}}}}

\bold{\large{\boxed{\red{\rm{Units\:digit\:=\:y\:=\:3}}}}}

\bold{\large{\boxed{\red{\rm{Original\:Number\:=\:10x\:+\:y\:=\:10\:\times\:6\:+\:3\:=\:60\:+\:3\:=\:63}}}}}

Similar questions