Math, asked by kavan12, 10 months ago

A number consists of two digits whose sum is 9. If 27 is added to the number, the digits are reversed. Find the number​

Answers

Answered by itzcutiepie777
2

Answer:

\pink{\boxed{\boxed{\boxed{Answer:-}}}}

Let the two numbers be a,b.

So, The two digit number will be 10a + b, and reverse of that number = 10b + a

                                                                             

                                                                                                

Given, a + b =9                   -------------------  (i)

           10a + b - 27 = 10b + a

           a - b = 3                   --------------------  (ii)

On solving (i) and (ii), we get

    a = 6

Submit this value in (ii) on we get,

          b = 9 - 6 = 3

On submitting the value in above equation we get,

10a + b

= 10 * 6 + 3

=63

So, The number is 63.

Hope this helps!

<marquee behaviour-move><font color="orange"><h1>#itzcutiepie </h1></marquee>

Answered by ƁƦƛƖƝԼƳƜƛƦƦƖƠƦ
1

Answer:

\huge\mathcal{ \underline{ \blue{63 \: is \: the \: answer}}}

Let the two numbers be a,b.

So, The two digit number will be 10a + b, and reverse of that number = 10b + a

Given, a + b =9 ------------------- (i)

10a + b - 27 = 10b + a

a - b = 3 -------------------- (ii)

On solving (i) and (ii), we get

a = 6

Submit this value in (ii) on we get,

b = 9 - 6 = 3

On submitting the value in above equation we get,

10a + b

= 10 * 6 + 3

=63

So, The number is 63.

Step-by-step explanation:

\small\mathfrak{ \underline{ \red{mark \: as \: brainliest \: also \: follow \: me}}}

Similar questions