Math, asked by Naveena779, 5 months ago

a number consists of two digits whose sum is 9. if 27 is subtracted from the number it's digits are reversed. find the number ​

Answers

Answered by Anonymous
1

Answer :-

→ 63 .

Step-by-step explanation :-

Let the ones digit be x and the tens digit be y.

Now, A/Q,

°•° x + y = 9................(i)

Original number = 10y + x .

And, the number obtained on reversing the digits = 10x + y .

And,

°•°10y + x - 27 = 10x + y

==> 10y - y + x - 10x = 27

==> 9y - 9x = 27

==> 9 ( y - x ) = 27

==> y - x = 3...............(ii)

Now, add in eq. (i) and (ii), we get

x + y = 9

- x + y = 3

-....+......+

----------------

==> 2y = 12 .

•°• y = 6 .

Now, put the value of y = 6 in eq. (i) , we get

==> x + y = 9 .

==> x + 6 = 9 .

==> x = 9 - 6 .

x = 3 .

Therefore, original Number = 10y + x .

= 10 ( 6 ) + 3 .

= 60 + 3 .

= 63.

Hence, The required number is 63.

Answered by rameshchand13338
0

answer is 18

Step-by-step explanation:

because if you subtract 27 -9 the answer will be 18 and when you reverse it the number is 8+1 and the sum is 9

Similar questions