a number consists of two digits, whose sum is 9. If the digits are reversed,the new number is 3/8 of the first number. Find the number.
Answers
Given :-
- Sum of digit of two-digit number = 9
- Digits reversed, new number = ⅜ of original number.
To find :-
- Original number
Solution :-
Let the digit at unit's place be m & digit at ten's place be n.
◗ Original number = m + 10n
◗ Reversed number = n + 10m
According to Question :
⇒ m + n = 9
⇒ m = 9 - n ----- Equation (i)
Case 2 :
⇒ n + 10m = ⅜ of (m + 10n)
⇒ n + 10m = (3m + 30n)/8
⇒ 8(n + 10m) = 3m + 30n
⇒ 8n + 80m = 3m + 30n
⇒ 80m - 3m = 30n - 8n
⇒ 77m = 22n
- Putting value from Equation (i)
⇒ 77(9 - n) = 22n
⇒ 693 - 77n = 22n
⇒ 693 = 22n + 77n
⇒ 693 = 99n
⇒ n = 693/99
⇒ n = 7
⋆ Now finding original number :
⇒ Original number = m + 10n
⇒ Original number = (9 - n) + 10(7)
⇒ Original number = (9 - 7) + 70
⇒ Original number = 2 + 70
⇒ Original number = 72
⋆ Now finding reversed number :
⇒ Reversed number = n + 10m
⇒ Reversed number = 7 + 10(2)
⇒ Reversed number = 7 + 20
⇒ Reversed number = 27
Therefore,
Original two-digit number = 72 & reversed number = 27 .
QUESTION :
SOLUTION :
Let the original number be 10 x + y
x + y = 9 ....... ( 1 )
=> X = 9 - y
10 y + x = { 3 / 8 } × ( 10x + y )
=> 80 y + 8 x = 30 x + 3 y..... ( 2 )
Solving we get :
X = 7
y = 2
Therefore the { original } number is 72.