Math, asked by ananyak861, 11 months ago

a number consists of two digits, whose sum is 9. If the digits are reversed,the new number is 3/8 of the first number. Find the number.

Answers

Answered by EliteSoul
83

Given :-

  • Sum of digit of two-digit number = 9
  • Digits reversed, new number = ⅜ of original number.

To find :-

  • Original number

Solution :-

Let the digit at unit's place be m & digit at ten's place be n.

Original number = m + 10n

Reversed number = n + 10m

According to Question :

⇒ m + n = 9

m = 9 - n ----- Equation (i)

Case 2 :

⇒ n + 10m = ⅜ of (m + 10n)

⇒ n + 10m = (3m + 30n)/8

⇒ 8(n + 10m) = 3m + 30n

⇒ 8n + 80m = 3m + 30n

⇒ 80m - 3m = 30n - 8n

⇒ 77m = 22n

  • Putting value from Equation (i)

⇒ 77(9 - n) = 22n

⇒ 693 - 77n = 22n

⇒ 693 = 22n + 77n

⇒ 693 = 99n

⇒ n = 693/99

⇒ n = 7

Now finding original number :

⇒ Original number = m + 10n

⇒ Original number = (9 - n) + 10(7)

⇒ Original number = (9 - 7) + 70

⇒ Original number = 2 + 70

Original number = 72

Now finding reversed number :

⇒ Reversed number = n + 10m

⇒ Reversed number = 7 + 10(2)

⇒ Reversed number = 7 + 20

Reversed number = 27

Therefore,

Original two-digit number = 72 & reversed number = 27 .

Answered by Saby123
48

 \tt{\huge{\orange { ------------ }}}

QUESTION :

 \sf{ \purple{a \:  number \:  consists \:  of \:   \: two  \: digits, \:  whose  \: sum \:  is \:  9.}} \\  \sf{ \orange{ If  \: the \:  digits \:  are \:  reversed, \: the  \: new \:  number \:  is \:  }} \: \\  \\  {{ 3/8  \: of \:  the \:  first  \: number. \:  Find \:  the  \: number.}}

SOLUTION :

Let the original number be 10 x + y

x + y = 9 ....... ( 1 )

=> X = 9 - y

10 y + x = { 3 / 8 } × ( 10x + y )

=> 80 y + 8 x = 30 x + 3 y..... ( 2 )

Solving we get :

X = 7

y = 2

Therefore the { original } number is 72.

Similar questions