Math, asked by vinaysingh5003, 1 year ago

A number in the tens place of a two digit number is f a two digit number is twice the digit in the unit place .One forth of the sum of original number and the number obtain by rvercing the digit is 33 frin the original number

Answers

Answered by VemugantiRahul
0
\mathcal{\huge{\blue{\underline{SOLUTION: }}}}

In a two-digit No.,

Let Units digit be y
& the tens digit be x

No. = (10 × face Value of tens place) + (1 × face value of units place)

i. e. No. = 10x + y

Given,
Tens digit = 2×(Units digit)
=> x = 2y

Now,
Original No. = 10(2y) + y

A New No. is obtained if digits are interchanged
New No. = 10(y) + 2y

Given,
\frac{Original No. + New No.}{4} = 33

=> \frac{(10(2y)+y + 10(y) +2y}{4}= 33

=>\frac{20y+y+10y+2y}{4}= 33

=>\frac{33y}{4}= 33

=> \frac{y}{4}=1.

=> y = 4

•°• x = 2y = 2(4) = 8

•°• Tens digit = 8 & Units digit = 4

•°• Required No. = 84

\mathcal{\huge{\pink{Hope It Helps}}}
Similar questions