a). P(3.2) and QX7.6) are two points. Find 1)the equation of the perpendicular bisector of PQ n) the value of bif(3.b) les on bisector.
Answers
Answer:
Let P(x,y) be any point on the perpendicular bisector of AB. Then
PA=PB
⇒
(x−3)
2
+(y−6)
2
=
(x+3)
2
+(y−4)
2
⇒(x−3)
2
+(y−6)
2
=(x+3)
2
+(y−4)
2
⇒x
2
−6x+9+y
2
−12y+36=x
2
+6x+9+y
2
−8y+16
⇒12x+4y−20=0
⇒3x+y−5=0
Hence, the equation of the perpendicular bisector of AB is 3x+y-5=0
(i) We know that the coordinates of any point on x-axis are of the form(x,o). In other words, y-coordinate of every point on x-axis is zero. So, putting y=o in (i),we get
3x−5=0⇒x=
3
5
Thus, the perpendicular bisector of AB cuts x-axis at(
3
5
,0)
(ii) The coordinates of any point on y-axis are of the form (o,y). Putting x=0 in (i), we get
y−5=0⇒y=5
Thus, the perpendicular bisector of AB intersects y-axis at (0,5)
( copy paste from topper )
Step-by-step explanation: