Physics, asked by nicolesunil2511, 11 months ago

A p.d of 6V is applied to two resistors of 3Ω and 6Ω connected in parallel . Calculate (i) equivalent resistance (ii) total current (ii) The current flowing in the 3Ω resistor .

Answers

Answered by Anonymous
29

Solution :

Given:

✏ Two resistors of resistance 3Ω and 6Ω are connected in parallel with p.d. 6V

To Find:

  • Equivalent resistance
  • Total current flow in circuit
  • Current flow in 3Ω resistor

Formula:

✏ Formula of eq. resistance in parallel connection is given by...

 \bigstar \:  \boxed{ \tt{ \large{ \pink{R_{eq} =  \dfrac{R_1 \times R_2}{R_1 + R_2}}}}} \:  \bigstar

✏ As per ohm's law, relation between potential difference, resistance and current is given by...

 \bigstar \:  \boxed{ \tt{ \large{ \purple{V = I \times R}}}} \:  \bigstar

Calculation:

_________________________________

  • Equivalent resistance

 \dashrightarrow \sf \: R_{eq} =  \dfrac{3 \times 6}{3 + 6}  \\  \\  \dashrightarrow \sf \: R_{eq} =  \dfrac{18}{9}  \\  \\  \dashrightarrow \:  \boxed{ \tt{ \red{\large{R_{eq} = 2 \:  \Omega}}}} \:  \orange{ \bigstar}

_________________________________

  • Total current flow

 \implies \sf \: V = I_{net} \times R_{eq} \\  \\  \implies \sf \: 6 = I_{net} \times 2 \\  \\  \implies \sf \: I_{net} =  \dfrac{6}{2}  \\  \\  \implies \:  \boxed{ \tt{\large{ \green{I_{net} = 3 \: A}}}} \:  \orange{ \bigstar}

_________________________________

  • Current flow in 3Ω resistor

 \rightarrowtail \sf \: V = I \times R \\  \\  \rightarrowtail \sf \: 6 = I \times 3 \\  \\  \rightarrowtail \sf \: I =  \dfrac{6}{3}  \\  \\  \rightarrowtail \:  \boxed{ \tt{ \large{\blue{I = 2 \: A}}}} \:  \orange{ \bigstar}

_________________________________

Additional information:

  • Ohm's law is not applicable for semi-conductor devices.
  • Potential difference remains same across all resistors in parallel connection.
  • Current is fundamental quantity.
Answered by BrainlyConqueror0901
28

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Equivalent\:resistance=2\Omega}}}

\green{\tt{\therefore{Total\:current\:flow=3\:A}}}

\green{\tt{\therefore{Current\:flow\:in\:3\Omega\:resistance=2\:A}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt:  \implies Potential \:difference (v)= 6 \: v \\  \\   \tt:  \implies Parallel\: resistance = 3 \Omega \: and \: 6 \Omega \\  \\   \red{\underline \bold{To \: Find :}}\\  \tt:  \implies Equivalent \: resistance( R_{equivalent}) = ? \\  \\  \tt:  \implies Total \: current(I) = ? \\  \\  \tt:  \implies Current \: flow \: in \: 3 \Omega \: resistance = ?

• According to given question :

 \bold{As \: we \: know \: that} \\  \tt:  \implies  R_{equivalent} =  \frac{1}{R_{1} }  + \frac{1}{R_{2} } \\  \\ \tt:  \implies  R_{equivalent} =  \frac{1}{3} +  \frac{1}{6}  \\  \\ \tt:  \implies  R_{equivalent} = \frac{2 + 1}{6}  \\  \\ \tt:  \implies  R_{equivalent} =  \frac{3}{6}  \\  \\  \green{\tt:  \implies  R_{equivalent} = 2\Omega} \\  \\  \bold{As \: we \: know \: that} \\  \tt: \implies V = IR \\  \\ \tt: \implies 6 = I \times 2 \\  \\ \tt: \implies I=  \frac{6}{2}  \\  \\  \green{\tt: \implies I= 3 \: A} \\  \\  \bold{Current \: flow \: in \: 3 \Omega} \\  \tt:  \implies V = I R_{1} \\  \\ \tt:  \implies 6 = I\times 3 \\  \\ \tt:  \implies I =  \frac{6}{3}  \\  \\  \green{\tt:  \implies I= 2 \: A}

Similar questions