Physics, asked by StrongGirl, 9 months ago

A p-n junction becomes active as photons of wavelength λ=400nm falls on it. Find the energy band gap? 3.09eV 4.51eV 2.45eV

Answers

Answered by Ekaro
23

Answer :

Threshold wavelength = 400nm

We have to find the energy band gap of p-n junction.

_________________________________

◈ Energy of photon is given by

  • E = hc/λ

h denotes plank constant

c denotes speed of light

λ denotes wavelength

\leadsto\sf\:E=\dfrac{(6.626\times 10^{-34})(3\times 10^8)}{400\times 10^{-9}}

\leadsto\sf\:E=\dfrac{19.878\times 10^{-26}}{400\times 10^{-9}}

\leadsto\sf\:E={4.96\times 10^{-19}\:J}

\leadsto\sf\:E=\dfrac{4.96\times 10^{-19}}{1.6\times 10^{-19}}

\leadsto\boxed{\bf{\red{E=3.09\:eV}}}


amitkumar44481: Awesome :-)
Answered by Anonymous
29

GiveN :

  • Wavelength of photons \sf{\lambda\ =\ 4 \times 10^{-7} m}

To FinD :

  • Energy in band gap.

SolutioN :

We know that,

\implies \boxed{\boxed{\sf{E\ =\ h \nu}}} \\ \\ \\ \\ \implies \sf{E\ =\ \dfrac{hc}{\lambda}} \\ \\ \\ \\ \implies \sf{E\ =\ \dfrac{(6.626\ \times\ 10^{-34}) \times \: ( 3\ \times\ 10^8)}{4\ \times\ 10^{-7}}} \\ \\ \\ \\ \implies \sf{E\ =\ \dfrac{19.878\ \times\ 10^{-34\ +\ 8}}{4\ \times\ 10^{-7}}} \\ \\ \\ \\ \implies \sf{E\ =\ \dfrac{19.878\ \times\ 10^{-26}}{4\ \times\ 10^{-7}}} \\ \\ \\ \\ \implies \sf{E\ =\ 4.96\ \times\ 10^{-26\ +\ 7}} \\ \\ \\ \\ \implies \sf{E\ =\ 4.96\ \times\ 10^{-19}} \\ \\ \\ \\ \implies \sf{E\ =\ 3.09\ eV}


amitkumar44481: Perfect :-)
Similar questions