A pair of integers whose sum is -10 and difference is 4
Answers
Answer:
–3 , –7
Solution:
Let the required integers be x and y .
Now,
According to the question , the sum of both the integers is –10 .
Thus,
x + y = -10 ------(1)
Also,
The difference between the integers is 4 .
Thus,
=> | x - y | = 4
=> x - y = ± 4
=> x - y = 4 -------(2.1) , x - y = -4 -------(2.2)
Here ,
Two cases arises.
Case(1) :
x + y = -10 -------(1)
x - y = 4 -------(2.1)
Adding eq-(1) and (2.1) , we get ;
=> x + y + x - y = -10 + 4
=> 2x = -6
=> x = -6/2
=> x = -3
Now,
Putting x = -3 in eq-(1) , we get ;
=> x + y = -10
=> -3 + y = -10
=> y = - 10 + 3
=> y = -7
Hence,
Required pair of integers are :
–3 , –7
°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°
Case(2) :
x + y = -10 -------(1)
x - y = -4 -------(2.2)
Adding eq-(1) and (2.2) , we get ;
=> x + y + x - y = -10 - 4
=> 2x = -14
=> x = -14/2
=> x = -7
Now,
Putting x = -7 in eq-(1) , we get ;
=> x + y = -10
=> -7 + y = -10
=> y = - 10 + 7
=> y = -3
Hence,
Required pair of integers are :
Required pair of integers are : –7 , –3
°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°
In both the cases , we got the same pair of integers , ie ; –3 , –7 .